Rad HAZU, Matematičke znanosti, Vol. 23 (2019), 107-122.
MINDING ISOMETRIES OF RULED SURFACES IN LORENTZ-MINKOWSKI SPACE
Ljiljana Primorac Gajčić and Željka Milin Šipuš
Department of Mathematics, University of Osijek, 31 000 Osijek, Croatia
e-mail: ljiljana.primorac@mathos.hr
Faculty of Science, Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: milin@math.hr
Abstract. In this paper we study isometries of ruled surfaces in
the Lorentz-Minkowski space that preserve rulings. A special attention is
given to the classes of surfaces having no Euclidean counterparts. We also
construct some examples of isometric ruled surfaces with certain properties
and rulings preserved.
2010 Mathematics Subject Classification.
53A35, 53B30, 53C50.
Key words and phrases. Lorentz-Minkowski space, isometry, ruled surface, B-scroll.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/y54jofpplm
References:
- F. Dillen and W. Kühnel, Ruled Weingarten surfaces in Minkowski 3-space,
Manuscripta Math. 98 (1999), 307-320.
MathSciNet
CrossRef
- F. Dillen, I. Van de Woestyne, L. Verstraelen and J. Walrave, Ruled surfaces of finite
type in 3-dimensional Minkowski space, Results Math. 27 (1995),250-255.
MathSciNet
CrossRef
- F. Dillen and W. Sodsiri, Ruled surfaces of Weingarten type in Minkowski 3-space, J.
Geom. 83 (2005), 10-21.
MathSciNet
CrossRef
- B. Divjak and Ž. Milin Šipuš, Minding isometries of ruled surfaces in pseudo-Galilean
space, J. Geom. 77 (2003), 35-47.
MathSciNet
CrossRef
- L. P. Eisenhart, A Treatise of the Differential Geometry of Curves and Surfaces, The
Cornell University Library Digital Collections, 1991/ Ginn & co. 1909.
MathSciNet
- S. Ersoy and M. Tosun, Lamarle formula in 3-dimensional Lorentz space, Math.
Commun. 20 (2010), 1-15.
MathSciNet
- G. Grantcharov and R. Salom, Bonnet pairs of surfaces in Minkowski space, Afr.
Diaspora J. Math. (N.S.) 14 (2012), 57-75.
MathSciNet
- E. Güler and A. T. Vanli, Bour’s theorem in Minkowski 3-space, J. Math. Kyoto Univ.
46 (2006), 47-63.
MathSciNet
CrossRef
- M. Hamann and B. Odehnal, Conchoidal ruled surfaces, in: Proceedings of the 15th
ICGG, Montreal, 2012, pp. 262-268.
- J. Inoguchi and S. Lee, Null curves in Minkowski 3-space, Int. Electron. J. Geom. 1
(2008), 40-83.
MathSciNet
- D. S. Kim, Y. H. Kim and D. W. Yoon, On ruled surfaces in Minkowski spaces,
Commun. Korean Math. Soc 18 (2003), 289-295.
MathSciNet
CrossRef
- Y. H. Kim and D. W. Yoon, Classification of ruled surfaces in Minkowski 3-spaces, J.
Geom. Phys. 49 (2004), 89-100.
MathSciNet
CrossRef
- Y. H. Kim and D. W. Yoon, On non-developable ruled surfaces in Lorentz-Minkowski
3-spaces, Taiwanese J. Math. 11 (2007), 197-214.
MathSciNet
CrossRef
- E. Kruppa, Natürliche Geometrie der Mindingschen Verbiegungen der Strahlflächen,
Monatsh. Math. 55 (1951), 340-345.
MathSciNet
CrossRef
- R. Lopez, Differential geometry of curves and surfaces in Lorentz-Minkowski space,
Int. Electron. J. Geom. 7 (2014), 44-107.
MathSciNet
- F. Manhart, Bonnet-Thomsen surfaces in Minkowski geometry, J. Geom. 106 (2015),
47-61.
MathSciNet
CrossRef
- Ž. Milin Šipuš and B. Divjak, Mappings of ruled surfaces in simply isotropic
space I31 that preserve the generators, Monatsh. Math. 139 (2003), 235-245.
MathSciNet
CrossRef
- Ž. Milin Šipuš and Lj. Primorac Gajčić, Ruled surfaces of constant slope in
3-Minkowski space, in: Proceedings of the 16th ICGG, Innsbruck, 2014, pp. 1087-1094.
- Lj. Primorac Gajčić, Mappings of ruled surfaces in Minkowski space, Ph.D. Thesis,
Department of Mathematics, University of Zagreb, Zagreb, 2016.
Rad HAZU Home Page