Rad HAZU, Matematičke znanosti, Vol. 23 (2019), 107-122.

MINDING ISOMETRIES OF RULED SURFACES IN LORENTZ-MINKOWSKI SPACE

Ljiljana Primorac Gajčić and Željka Milin Šipuš

Department of Mathematics, University of Osijek, 31 000 Osijek, Croatia
e-mail: ljiljana.primorac@mathos.hr

Faculty of Science, Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: milin@math.hr


Abstract.   In this paper we study isometries of ruled surfaces in the Lorentz-Minkowski space that preserve rulings. A special attention is given to the classes of surfaces having no Euclidean counterparts. We also construct some examples of isometric ruled surfaces with certain properties and rulings preserved.

2010 Mathematics Subject Classification.   53A35, 53B30, 53C50.

Key words and phrases.   Lorentz-Minkowski space, isometry, ruled surface, B-scroll.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/y54jofpplm


References:

  1. F. Dillen and W. Kühnel, Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta Math. 98 (1999), 307-320.
    MathSciNet     CrossRef

  2. F. Dillen, I. Van de Woestyne, L. Verstraelen and J. Walrave, Ruled surfaces of finite type in 3-dimensional Minkowski space, Results Math. 27 (1995),250-255.
    MathSciNet     CrossRef

  3. F. Dillen and W. Sodsiri, Ruled surfaces of Weingarten type in Minkowski 3-space, J. Geom. 83 (2005), 10-21.
    MathSciNet     CrossRef

  4. B. Divjak and Ž. Milin Šipuš, Minding isometries of ruled surfaces in pseudo-Galilean space, J. Geom. 77 (2003), 35-47.
    MathSciNet     CrossRef

  5. L. P. Eisenhart, A Treatise of the Differential Geometry of Curves and Surfaces, The Cornell University Library Digital Collections, 1991/ Ginn & co. 1909.
    MathSciNet

  6. S. Ersoy and M. Tosun, Lamarle formula in 3-dimensional Lorentz space, Math. Commun. 20 (2010), 1-15.
    MathSciNet

  7. G. Grantcharov and R. Salom, Bonnet pairs of surfaces in Minkowski space, Afr. Diaspora J. Math. (N.S.) 14 (2012), 57-75.
    MathSciNet

  8. E. Güler and A. T. Vanli, Bour’s theorem in Minkowski 3-space, J. Math. Kyoto Univ. 46 (2006), 47-63.
    MathSciNet     CrossRef

  9. M. Hamann and B. Odehnal, Conchoidal ruled surfaces, in: Proceedings of the 15th ICGG, Montreal, 2012, pp. 262-268.

  10. J. Inoguchi and S. Lee, Null curves in Minkowski 3-space, Int. Electron. J. Geom. 1 (2008), 40-83.
    MathSciNet

  11. D. S. Kim, Y. H. Kim and D. W. Yoon, On ruled surfaces in Minkowski spaces, Commun. Korean Math. Soc 18 (2003), 289-295.
    MathSciNet     CrossRef

  12. Y. H. Kim and D. W. Yoon, Classification of ruled surfaces in Minkowski 3-spaces, J. Geom. Phys. 49 (2004), 89-100.
    MathSciNet     CrossRef

  13. Y. H. Kim and D. W. Yoon, On non-developable ruled surfaces in Lorentz-Minkowski 3-spaces, Taiwanese J. Math. 11 (2007), 197-214.
    MathSciNet     CrossRef

  14. E. Kruppa, Natürliche Geometrie der Mindingschen Verbiegungen der Strahlflächen, Monatsh. Math. 55 (1951), 340-345.
    MathSciNet     CrossRef

  15. R. Lopez, Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom. 7 (2014), 44-107.
    MathSciNet

  16. F. Manhart, Bonnet-Thomsen surfaces in Minkowski geometry, J. Geom. 106 (2015), 47-61.
    MathSciNet     CrossRef

  17. Ž. Milin Šipuš and B. Divjak, Mappings of ruled surfaces in simply isotropic space I31 that preserve the generators, Monatsh. Math. 139 (2003), 235-245.
    MathSciNet     CrossRef

  18. Ž. Milin Šipuš and Lj. Primorac Gajčić, Ruled surfaces of constant slope in 3-Minkowski space, in: Proceedings of the 16th ICGG, Innsbruck, 2014, pp. 1087-1094.

  19. Lj. Primorac Gajčić, Mappings of ruled surfaces in Minkowski space, Ph.D. Thesis, Department of Mathematics, University of Zagreb, Zagreb, 2016.


Rad HAZU Home Page