Rad HAZU, Matematičke znanosti, Vol. 23 (2019), 51-69.
CHARACTERIZATIONS OF *-LIE DERIVABLE MAPPINGS ON PRIME *-RINGS
Ahmad N. Alkenani, Mohammad Ashraf and Bilal Ahmad Wani
Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: aalkenani10@hotmail.com
Department of Mathematics, Aligarh Muslim University, Aligarh,202002, India
e-mail: mashraf80@hotmail.com
e-mail: bilalwanikmr@gmail.com
Abstract. Let R
be a *-ring containing a nontrivial self-adjoint
idempotent. In this paper it is shown that under some mild conditions on
R,
if a mapping d : R
→ R
satisfies
d([U*, V]) = [d(U)*, V] + [U*, d(V)]
for all U, V ∈
R,
then there exists ZU,V ∈
Z(R)
(depending on U and V),
where Z(R)
is the center of R,
such that d(U + V) = d(U) + d(V) +
ZU,V.
Moreover, if R
is a 2-torsion free prime *-ring additionally, then
d = ψ + ξ,
where ψ is an additive *-derivation of R
into its central closure T and
ξ is a mapping from R into its extended
centroid C such that
ξ(U + V) =
ξ(U) + ξ(V) + ZU,V
and ξ([U, V]) = 0 for all U, V ∈
R. Finally, the above
ring theoretic results have been applied to some special classes of algebras
such as nest algebras and von Neumann algebras.
2010 Mathematics Subject Classification.
16N60, 16W25, 16W10.
Key words and phrases. Prime rings, Lie derivable mappings, involution, extended
centroid, central closure.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/y26kec3379
References:
- M. Ashraf and N. Parveen, On Jordan triple higher derivable mappings in rings,
Mediterr. J. Math. 13 (2016), 1465-1477.
MathSciNet
CrossRef
- M. Ashraf and N. Parveen, Lie triple higher derivable maps on rings, Comm. Algebra
45 (2017), 2256-2275.
MathSciNet
CrossRef
- K. I. Beidar, M. S. Martinadle III and A. V. Mikhalev, Rings with generalized identities,
Monographs and Textbooks in Pure and Applied Mathematics, Vol. 196, Marcel
Dekker, New York, 1996.
MathSciNet
- L. Chen and J. H. Zhang, Nonlinear Lie derivations on upper triangular matrices,
Linear Multilinear Algebra 56 (2008), 725-730.
MathSciNet
CrossRef
- W. Cheung, Lie derivations of triangular algebras, Linear Multilinear Algebra 51
(2003), 299-310.
MathSciNet
CrossRef
- M. N. Daif, When is a multiplicative derivation additive?, Internat. J. Math. Math.
Sci. 14 (1991), 615-618.
MathSciNet
CrossRef
- I. N. Herstein, Rings with Involution, The University of Chicago Press, Chicago, London,
1979.
MathSciNet
- W. Jing and F. Lu, Lie derivable mappings on prime rings, Linear Multilinear Algebra
60 (2012), 167-180.
MathSciNet
CrossRef
- C. Li, Q. Chen and T. Wang, *-Lie derivable mappings on von Neumann algebras,
Commun. Math. Stat. 4 (2016), 81-92.
MathSciNet
CrossRef
- C. Li, X. Fang, F. Lu and T. Wang, Lie triple derivable mappings on rings, Comm.
Algebra 42 (2014), 2510-2527.
MathSciNet
CrossRef
- F. Lu, Additivity of Jordan maps on standard operator algebras, Linear Algebra Appl.
357 (2002), 123-131.
MathSciNet
CrossRef
- F. Lu and W. Jing, Characterizations of Lie derivations of B(X), Linear Algebra Appl.
432 (2010) 89-99.
MathSciNet
CrossRef
- F. Lu and B. Liu, Lie derivable maps on B(X), J. Math. Anal. Appl. 372 (2010),
369-376.
MathSciNet
CrossRef
- W. S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math.
Soc. 21 (1969), 695-698.
MathSciNet
CrossRef
- M. Mathieu and A. R. Villena, The structure of Lie derivations on C*-algebras, J.
Funct. Anal. 202 (2003), 504-525.
MathSciNet
CrossRef
- C. R. Mires, Lie derivations of von Neumann algebras, Duke Math. J. 40 (1973),
403-409.
MathSciNet
- A. R. Villena, Lie derivations on Banach algebras, J. Algebra 226 (2000), 390-409.
MathSciNet
CrossRef
- W. Y. Yu and J. H. Zhang, Nonlinear Lie derivations of triangular algebras, Linear
Algebra Appl. 432 (2010), 2953-2960.
MathSciNet
CrossRef
- W. Y. Yu and J. H. Zhang, Nonlinear *-Lie derivations on factor von Neumann
algebras, Linear Algebra Appl. 437 (2012), 1979-1991.
MathSciNet
CrossRef
- F. Zhang and J. Zhang, Nonlinear Lie derivations on factor von Neumann algebras,
Acta Math. Sinica (Chin. Ser.) 54 (2011), 791-802.
MathSciNet
Rad HAZU Home Page