Rad HAZU, Matematičke znanosti, Vol. 23 (2019), 51-69.

CHARACTERIZATIONS OF *-LIE DERIVABLE MAPPINGS ON PRIME *-RINGS

Ahmad N. Alkenani, Mohammad Ashraf and Bilal Ahmad Wani

Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: aalkenani10@hotmail.com

Department of Mathematics, Aligarh Muslim University, Aligarh,202002, India
e-mail: mashraf80@hotmail.com
e-mail: bilalwanikmr@gmail.com


Abstract.   Let R be a *-ring containing a nontrivial self-adjoint idempotent. In this paper it is shown that under some mild conditions on R, if a mapping d : RR satisfies

d([U*, V]) = [d(U)*, V] + [U*, d(V)]

for all U, VR, then there exists ZU,VZ(R) (depending on U and V), where Z(R) is the center of R, such that d(U + V) = d(U) + d(V) + ZU,V. Moreover, if R is a 2-torsion free prime *-ring additionally, then d = ψ + ξ, where ψ is an additive *-derivation of R into its central closure T and ξ is a mapping from R into its extended centroid C such that ξ(U + V) = ξ(U) + ξ(V) + ZU,V and ξ([U, V]) = 0 for all U, VR. Finally, the above ring theoretic results have been applied to some special classes of algebras such as nest algebras and von Neumann algebras.

2010 Mathematics Subject Classification.   16N60, 16W25, 16W10.

Key words and phrases.   Prime rings, Lie derivable mappings, involution, extended centroid, central closure.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/y26kec3379


References:

  1. M. Ashraf and N. Parveen, On Jordan triple higher derivable mappings in rings, Mediterr. J. Math. 13 (2016), 1465-1477.
    MathSciNet     CrossRef

  2. M. Ashraf and N. Parveen, Lie triple higher derivable maps on rings, Comm. Algebra 45 (2017), 2256-2275.
    MathSciNet     CrossRef

  3. K. I. Beidar, M. S. Martinadle III and A. V. Mikhalev, Rings with generalized identities, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 196, Marcel Dekker, New York, 1996.
    MathSciNet

  4. L. Chen and J. H. Zhang, Nonlinear Lie derivations on upper triangular matrices, Linear Multilinear Algebra 56 (2008), 725-730.
    MathSciNet     CrossRef

  5. W. Cheung, Lie derivations of triangular algebras, Linear Multilinear Algebra 51 (2003), 299-310.
    MathSciNet     CrossRef

  6. M. N. Daif, When is a multiplicative derivation additive?, Internat. J. Math. Math. Sci. 14 (1991), 615-618.
    MathSciNet     CrossRef

  7. I. N. Herstein, Rings with Involution, The University of Chicago Press, Chicago, London, 1979.
    MathSciNet

  8. W. Jing and F. Lu, Lie derivable mappings on prime rings, Linear Multilinear Algebra 60 (2012), 167-180.
    MathSciNet     CrossRef

  9. C. Li, Q. Chen and T. Wang, *-Lie derivable mappings on von Neumann algebras, Commun. Math. Stat. 4 (2016), 81-92.
    MathSciNet     CrossRef

  10. C. Li, X. Fang, F. Lu and T. Wang, Lie triple derivable mappings on rings, Comm. Algebra 42 (2014), 2510-2527.
    MathSciNet     CrossRef

  11. F. Lu, Additivity of Jordan maps on standard operator algebras, Linear Algebra Appl. 357 (2002), 123-131.
    MathSciNet     CrossRef

  12. F. Lu and W. Jing, Characterizations of Lie derivations of B(X), Linear Algebra Appl. 432 (2010) 89-99.
    MathSciNet     CrossRef

  13. F. Lu and B. Liu, Lie derivable maps on B(X), J. Math. Anal. Appl. 372 (2010), 369-376.
    MathSciNet     CrossRef

  14. W. S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc. 21 (1969), 695-698.
    MathSciNet     CrossRef

  15. M. Mathieu and A. R. Villena, The structure of Lie derivations on C*-algebras, J. Funct. Anal. 202 (2003), 504-525.
    MathSciNet     CrossRef

  16. C. R. Mires, Lie derivations of von Neumann algebras, Duke Math. J. 40 (1973), 403-409.
    MathSciNet

  17. A. R. Villena, Lie derivations on Banach algebras, J. Algebra 226 (2000), 390-409.
    MathSciNet     CrossRef

  18. W. Y. Yu and J. H. Zhang, Nonlinear Lie derivations of triangular algebras, Linear Algebra Appl. 432 (2010), 2953-2960.
    MathSciNet     CrossRef

  19. W. Y. Yu and J. H. Zhang, Nonlinear *-Lie derivations on factor von Neumann algebras, Linear Algebra Appl. 437 (2012), 1979-1991.
    MathSciNet     CrossRef

  20. F. Zhang and J. Zhang, Nonlinear Lie derivations on factor von Neumann algebras, Acta Math. Sinica (Chin. Ser.) 54 (2011), 791-802.
    MathSciNet


Rad HAZU Home Page