Rad HAZU, Matematičke znanosti, Vol. 23 (2019), 13-29.
HADAMARD DIFFERENCE SETS AND RELATED COMBINATORIAL OBJECTS IN GROUPS OF ORDER 144
Tanja Vučičić
Faculty of Science, University of Split, Ruđera Boškovića 33, 21 000 Split, Croatia
e-mail: vucicic@pmfst.hr
Abstract. In this paper we address an appealing and so far not
completed combinatorial problem of difference set (DS) existence in groups
of order 144. We apply our recently established method for DS construction
which proves to be very efficient. The result is more than 5000 inequivalent
(144, 66, 30) DSes obtained in 131 groups of order 144. The number of nonisomorphic
symmetric designs rising from them is 1364.
Using the obtained DSes as a source, new regular (144, 66, 30, 30) and
(144, 65, 28, 30) partial difference sets are constructed, together with the
corresponding strongly regular graphs. 43 non-isomorphic graphs of valency
66 are obtained and 78 of valency 65. The full automorphism groups
of these graphs, as well as those of symmetric designs, are explored using
the software package Magma.
2010 Mathematics Subject Classification.
05B05, 05B10.
Key words and phrases. Transitive incidence structure, (partial) difference set,
strongly regular graph.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/ypn4oc88w9
References:
- T. Beth, D. Jungnickel and H. Lenz, Design theory, Cambridge University Press, 1999.
MathSciNet
- C. Bhattacharya and K. W. Smith, Factoring (16, 6, 2) Hadamard difference sets,
Electron.J. Combin. 15 (2008), #R112.
MathSciNet
- W. Bosma, J. J. Cannon, C. Fieker and A. Steel (eds.), Handbook of Magma functions,
Edition 2.16, 2010.
- S. Braić, A. Golemac, J. Mandić and T. Vučičić, Primitive Symmetric Designs with
up to 2500 Points, J. Combin. Des. 19 (2011), 463-474.
MathSciNet
CrossRef
- C. J. Colbourn and J. H. Dinitz, Eds., Handbook of combinatorial designs, Second
Edition, CRC Press, New York, 2007.
MathSciNet
CrossRef
- P. J. Cameron and C. E. Praeger, Block-transitive t-designs I: point-imprimitive designs,
Discrete Math. 118 (1993), 33-43.
MathSciNet
CrossRef
- J. A. Davis and J. Jedwab, A survey of Hadamard difference sets, in: Groups, Difference
Sets and the Monster (eds. K. T. Arasu et al.), de Gruyter, Berlin-New York,
1996, pp. 145-156.
MathSciNet
- J. F. Dillon, Variations on a scheme of McFarland for noncyclic difference sets,
J. Combin. Theory Ser. A 40 (1985), 9-21.
MathSciNet
CrossRef
- J. F. Dillon, Some REALLY beautiful Hadamard matrices, Cryptogr. Commun. 2
(2010), 271-292.
MathSciNet
CrossRef
- A. Golemac, J. Mandić and T. Vučičić, New regular partial difference sets and strongly
regular graphs with parameters (96, 20, 4, 4) and (96, 19, 2, 4), Electron. J. Combin. 13
(2006), #R88.
MathSciNet
- Y. J. Ionin and M. S. Shrikhande, Combinatorics of Symmetric Designs, Cambridge
University Press, New York, 2006.
MathSciNet
CrossRef
- N. Kroeger, M. Miller, C. P. Mooney, K. Shepard and K. W. Smith, Determining
Existence of Hadamard Difference Sets in Groups of Order 144, NSF-REU research
report, Central Michigan University, 2007.
- S. L. Ma, Partial difference sets, Discrete Math. 52 1984, 75-89.
MathSciNet
CrossRef
- S. L. Ma, A survey of partial difference sets, Des. Codes Cryptogr. 4 (1994), 221-261.
MathSciNet
CrossRef
- J. Mandić and T. Vučičić, On the existence of Hadamard difference sets in groups of
order 400, Adv. Math. Commun. 10 (2016), 547-554.
MathSciNet
CrossRef
- P. K. Menon, On difference sets whose parameters satisfy a certain relation, Proc.
Amer. Math. Soc. 13 (1962), 739-745.
MathSciNet
CrossRef
- http://www.pmfst.hr/~vucicic/MAGMA_REC144/
Rad HAZU Home Page