Rad HAZU, Matematičke znanosti, Vol. 23 (2019), 13-29.

HADAMARD DIFFERENCE SETS AND RELATED COMBINATORIAL OBJECTS IN GROUPS OF ORDER 144

Tanja Vučičić

Faculty of Science, University of Split, Ruđera Boškovića 33, 21 000 Split, Croatia
e-mail: vucicic@pmfst.hr


Abstract.   In this paper we address an appealing and so far not completed combinatorial problem of difference set (DS) existence in groups of order 144. We apply our recently established method for DS construction which proves to be very efficient. The result is more than 5000 inequivalent (144, 66, 30) DSes obtained in 131 groups of order 144. The number of nonisomorphic symmetric designs rising from them is 1364.

Using the obtained DSes as a source, new regular (144, 66, 30, 30) and (144, 65, 28, 30) partial difference sets are constructed, together with the corresponding strongly regular graphs. 43 non-isomorphic graphs of valency 66 are obtained and 78 of valency 65. The full automorphism groups of these graphs, as well as those of symmetric designs, are explored using the software package Magma.

2010 Mathematics Subject Classification.   05B05, 05B10.

Key words and phrases.   Transitive incidence structure, (partial) difference set, strongly regular graph.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/ypn4oc88w9


References:

  1. T. Beth, D. Jungnickel and H. Lenz, Design theory, Cambridge University Press, 1999.
    MathSciNet

  2. C. Bhattacharya and K. W. Smith, Factoring (16, 6, 2) Hadamard difference sets, Electron.J. Combin. 15 (2008), #R112.
    MathSciNet

  3. W. Bosma, J. J. Cannon, C. Fieker and A. Steel (eds.), Handbook of Magma functions, Edition 2.16, 2010.

  4. S. Braić, A. Golemac, J. Mandić and T. Vučičić, Primitive Symmetric Designs with up to 2500 Points, J. Combin. Des. 19 (2011), 463-474.
    MathSciNet     CrossRef

  5. C. J. Colbourn and J. H. Dinitz, Eds., Handbook of combinatorial designs, Second Edition, CRC Press, New York, 2007.
    MathSciNet     CrossRef

  6. P. J. Cameron and C. E. Praeger, Block-transitive t-designs I: point-imprimitive designs, Discrete Math. 118 (1993), 33-43.
    MathSciNet     CrossRef

  7. J. A. Davis and J. Jedwab, A survey of Hadamard difference sets, in: Groups, Difference Sets and the Monster (eds. K. T. Arasu et al.), de Gruyter, Berlin-New York, 1996, pp. 145-156.
    MathSciNet

  8. J. F. Dillon, Variations on a scheme of McFarland for noncyclic difference sets, J. Combin. Theory Ser. A 40 (1985), 9-21.
    MathSciNet     CrossRef

  9. J. F. Dillon, Some REALLY beautiful Hadamard matrices, Cryptogr. Commun. 2 (2010), 271-292.
    MathSciNet     CrossRef

  10. A. Golemac, J. Mandić and T. Vučičić, New regular partial difference sets and strongly regular graphs with parameters (96, 20, 4, 4) and (96, 19, 2, 4), Electron. J. Combin. 13 (2006), #R88.
    MathSciNet

  11. Y. J. Ionin and M. S. Shrikhande, Combinatorics of Symmetric Designs, Cambridge University Press, New York, 2006.
    MathSciNet     CrossRef

  12. N. Kroeger, M. Miller, C. P. Mooney, K. Shepard and K. W. Smith, Determining Existence of Hadamard Difference Sets in Groups of Order 144, NSF-REU research report, Central Michigan University, 2007.

  13. S. L. Ma, Partial difference sets, Discrete Math. 52 1984, 75-89.
    MathSciNet     CrossRef

  14. S. L. Ma, A survey of partial difference sets, Des. Codes Cryptogr. 4 (1994), 221-261.
    MathSciNet     CrossRef

  15. J. Mandić and T. Vučičić, On the existence of Hadamard difference sets in groups of order 400, Adv. Math. Commun. 10 (2016), 547-554.
    MathSciNet     CrossRef

  16. P. K. Menon, On difference sets whose parameters satisfy a certain relation, Proc. Amer. Math. Soc. 13 (1962), 739-745.
    MathSciNet     CrossRef

  17. http://www.pmfst.hr/~vucicic/MAGMA_REC144/

Rad HAZU Home Page