Rad HAZU, Matematičke znanosti, Vol. 23 (2019), 1-11.

REARRANGING ABSOLUTELY CONVERGENT WELL-ORDERED SERIES IN BANACH SPACES

Vedran Čačić, Marko Doko and Marko Horvat

Department of Mathematics, University of Zagreb, 10000 Zagreb, Croatia
e-mail: veky@math.hr

Max Planck Institute for Software Systems, 67663 Kaiserslautern, Germany
e-mail: mdoko@mpi-sws.org

Department of Mathematics, University of Zagreb, 10000 Zagreb, Croatia
e-mail: mhorvat@math.hr


Abstract.   We identify a general reordering principle for well-ordered series in Banach spaces. We prove that for every absolutely convergent wellordered series indexed by a countable ordinal, if the series is rearranged according to any countable ordinal, then the absolute convergence and the sum of the series remain unchanged.

2010 Mathematics Subject Classification.   03E10, 40A05.

Key words and phrases.   Well-ordered series, summability, absolute convergence, reordering, Banach spaces, ordinals.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/yq32oh4qd9


References:

  1. J. P. Aguilera and D. Fernández-Duque, Strong completeness of provability logic for ordinal spaces, J. Symb. Log. 82 (2017), 608-628.
    MathSciNet     CrossRef

  2. J. Dieudonné, Foundations of Modern Analysis. Academic Press, 1960.
    MathSciNet

  3. A. Dvoretzky and C. A. Rogers, Absolute and unconditional convergence in normed linear spaces, Proc. Nat. Acad. Sci. U. S. A. 36 (1950), 192-197.
    MathSciNet     CrossRef

  4. R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1994.
    MathSciNet

  5. S. V. Heikkilä, On summability, integrability and impulsive differential equations in Banach spaces, Bound. Value Probl. 2013, 2013:91.
    MathSciNet     CrossRef

  6. T. H. Hildebrandt, On unconditional convergence in normed vector spaces, Bull. Amer. Math. Soc. 46 (1940), 959-962.
    MathSciNet     CrossRef

  7. P. Komjáth, Rearranging transfinite series of ordinals, Bull. Austral. Math. Soc. 16 (1977), 321-323.
    MathSciNet     CrossRef

  8. J. C. Shepherdson, Well-ordered sub-series of general series, Proc. London Math. Soc. (3) 1 (1951), 291-307.
    MathSciNet     CrossRef


Rad HAZU Home Page