Rad HAZU, Matematičke znanosti, Vol. 22 (2018), 145-170.
THE QUOTIENT SHAPES OF lp AND Lp SPACES
Nikica Uglešić
Veli Råt, Dugi Otok, Hrvatska
e-mail: nuglesic@unizd.hr
Abstract. All lp spaces (over the same field),
p ≠ ∞, have the finite
quotient shape type of the Hilbert space l2. It is also the finite quotient
shape type of all the subspaces lp(p'), p < p' ≤ ∞,
as well as of all their direct sum subspaces
F0N(p'), 1 ≤ p' ≤ ∞.
Furthermore, their countable and finite quotient shape types coincide. Similarly,
for a given positive
integer, all Lp spaces (over the same field) have the finite quotient shape
type of the Hilbert space L2, and their countable and finite quotient shape
types coincide. Quite analogous facts hold true for the (special type of)
Sobolev spaces (of all appropriate real functions).
2010 Mathematics Subject Classification.
54E99, 55P55.
Key words and phrases. Normed (Banach, Hilbert vectorial) space, quotient normed
space, lp space, Lp space, Sobolev space, (algebraic) dimension,
(infinite) cardinal, (general) continuum hypothesis, quotient shape.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/9xn31cr62y
References:
- K. Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968),
223–254.
MathSciNet
CrossRef
- K. Borsuk, Theory of Shape, Monografie Matematyczne 59, Polish Scientific Publishers,
Warszawa, 1975.
MathSciNet
- J.-M. Cordier and T. Porter, Shape Theory: Categorical Methods of Approximation,
Ellis Horwood Ltd., Chichester, 1989. (Dover edition, 2008.)
MathSciNet
- J. Dugundji, Topology, Allyn and Bacon, Inc. Boston, 1978.
MathSciNet
- J. Dydak and J. Segal, Shape theory: An introduction, Lecture Notes in Math. 688,
Springer-Verlag, Berlin, 1978.
MathSciNet
- D.A. Edwards and H.M. Hastings, Čech and Steenrod homotopy theories with applications
to geometric topology, Lecture Notes in Math. 542, Springer-Verlag, Berlin,
1976.
MathSciNet
- H. Herlich and G. E. Strecker, Category Theory: An Introduction, Allyn and Bacon
Inc., Boston, 1973.
MathSciNet
- N. Koceić Bilan and N. Uglešić, The coarse shape,
Glas. Mat. Ser. III 42(62) (2007),
145–187.
MathSciNet
CrossRef
- E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons,
New York, 1989.
MathSciNet
- S. Kurepa, Funkcionalna analiza : elementi teorije operatora, Školska knjiga, Zagreb, 1990.
- S. Mardešić and J. Segal, Shape Theory, North-Holland, Amsterdam, 1982.
MathSciNet
- W. Rudin, Functional Analysis, Second Edition, McGraw-Hill, Inc., New York, 1991.
MathSciNet
- N. Uglešić, The shapes in a concrete category,
Glas. Mat. Ser. III 51(71) (2016),
255–306.
MathSciNet
CrossRef
- N. Uglešić, On the quotient shape of vectorial spaces, Rad Hrvat. Akad. Znan. Umjet.
Mat. Znan. 21 (2017), 179–203.
MathSciNet
CrossRef
- N. Uglešić, On the quotient shape of topological spaces,
Topology Appl. 239 (2018), 142–151.
MathSciNet
CrossRef
- N. Uglešić and B. Červar, The concept of a weak shape type,
International J. of Pure and Applied Math. 39 (2007), 363–428.
MathSciNet
Rad HAZU Home Page