Rad HAZU, Matematičke znanosti, Vol. 22 (2018), 129-143.

KIEPERT HYPERBOLA IN AN ISOTROPIC PLANE

Vladimir Volenec, Zdenka Kolar-Begović and Ružica Kolar-Šuper

Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: volenec@math.hr

Department of Mathematics, University of Osijek, 31 000 Osijek, Croatia
e-mail: zkolar@mathos.hr

Faculty of Education, University of Osijek, 31 000 Osijek, Croatia
e-mail: rkolar@foozos.hr


Abstract.   The concept of the Kiepert hyperbola of an allowable triangle in an isotropic plane is introduced in this paper. Important properties of the Kiepert hyperbola will be investigated in the case of the standard triangle. The relationships between the introduced concepts and some well known elements of a triangle will also be studied.

2010 Mathematics Subject Classification.   51N25.

Key words and phrases.   Isotropic plane, Kiepert triangle, Kiepert hyperbola, standard triangle, Steiner ellipse.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/mzvkptzrw9


References:

  1. C. Alasia, La recente geometria del triangolo, Citta di Castello, 1900.

  2. J. Beban–Brkić, R. Kolar–Šuper, Z. Kolar–Begović and V. Volenec, On Feuerbach’s theorem and a pencil of circles in the isotropic plane, J. Geom. Graph. 10 (2006), 125–132.
    MathSciNet

  3. E. Cesaro, Sur l’emploi des coordonnées barycentriques, Mathesis 10 (1890), 177–190.

  4. R. H. Eddy and R. Fritsch, The conics of Ludwig Kiepert: a comprehensive lesson in the geometry of the triangle, Math. Mag. 67 (1994), 188–205.
    MathSciNet

  5. W. Effenberger, Eine systematische Zusammenfassung merkwürdiger Punkte im geradlinigen Dreieck, Zeitschr. Math. Naturwiss. Unterr. 44 (1913), 369–379.

  6. R. Goormaghtigh, Sur deux points remarquables du triangle, Mathesis 42 (1928), 362–363.

  7. L. Kiepert, Solution de la question 864, Nouv. Ann. Math. (2) 8 (1869), 40–42.

  8. Z. Kolar–Begović, R. Kolar–Šuper, J. Beban–Brkić and V. Volenec, Symmedians and the symmedian center of the triangle in an isotropic plane, Math. Pannonica 17 (2006), 287–301.
    MathSciNet

  9. R. Kolar–Šuper, Z. Kolar–Begović, V. Volenec and J. Beban–Brkiæ, Metrical relationships in a standard triangle in an isotropic plane, Math. Commun. 10 (2005), 149–157.
    MathSciNet

  10. R. Kolar–Šuper, Z. Kolar–Begović, V. Volenec and J. Beban–Brkić, Isogonality and inversion in an isotropic plane, Int. J. Pure Appl. Math. 44 (2008), 339-346.
    MathSciNet

  11. C. A. Laisant, Sur les asymptotes de l’hyperbole de Kiepert, Recueil Assoc. Franc. Avanc. Sci. 16 (1887), 113–114.

  12. J. Leemans, Propriétés du triangle déduites de la considération de formes projectives du prémier et du second degré, Mathesis 51 (1937), 58–64.

  13. J. Majcen, O novoj vrsti kvadratskih transformacija, Rad Jugosl. Akad. Znan. Umjetn. 151 (1902), 1–17.

  14. J. Neuberg and A. Gob, Sur les axes de Steiner et l’hyperbole de Kiepert, Recueil Assoc. Franc. Avanc. Sci. 18 (1889), 166–179.

  15. L. Ripert, Remarque sur le triangle, Mathesis (2) 9 (1899), 63–64.

  16. E. Rouché and C. deComberousse, Traité de géométrie, II, Gauthier-Villars, Paris 1912 (Note III, 595–641)

  17. H. Sachs, Ebene isotrope Geometrie, Vieweg–Verlag, Braunschweig, 1987.
    MathSciNet     CrossRef

  18. K. Strubecker, Geometrie in einer isotropen Ebene, Math. Naturwiss. Unterricht 15 (1962), 297–306, 343–351, 385–394.
    MathSciNet

  19. G. Tarry, Sur l’axe d’homologie du triangle fondamental et du triangle de Brocard, Mathesis (2) 5 (1895), 5–7.

  20. V. Volenec, Z. Kolar–Begović and R. Kolar–Šuper, Steiner’s ellipses of the triangle in an isotropic plane, Math. Pannonica 21 (2010), 229-238.
    MathSciNet

  21. V. Volenec, Z. Kolar–Begović and R. Kolar–Šuper, Kiepert triangles in an isotropic plane, Sarajevo J. Math. 7(19) (2011), 81–90.
    MathSciNet


Rad HAZU Home Page