Rad HAZU, Matematičke znanosti, Vol. 22 (2018), 107-117.

ON p–EXTENDED MATHIEU SERIES

Tibor K. Pogány and Rakesh K. Parmar

Faculty of Maritime Studies, University of Rijeka, 51 000 Rijeka, Croatia
Institute of Applied Mathematics, Óbuda University, 1034 Budapest, Hungary
e-mail: poganj@pfri.hr

Department of Mathematics, Government College of Engineering and Technology, Bikaner 334004, Rajasthan State, India
e-mail: rakeshparmar27@gmail.com


Abstract.   Motivated by several generalizations of the well–known Mathieu series, the main object of this paper is to introduce new extension of generalized Mathieu series and to derive various integral representations of such series. Finally, master bounding inequality is established using the newly derived integral expression.

2010 Mathematics Subject Classification.   26D15, 33E20, 44A10, 33C05, 44A20.

Key words and phrases.   Mathieu series, Generalized Mathieu series, Mellin and Laplace transforms, Bessel function of the first kind, Extended Riemann Zeta function.


Full text (PDF) (free access)

DOI: http://doi.org/10.21857/90836cwk4y


References:

  1. Á. Baricz, P. L. Butzer and T. K. Pogány, Alternating Mathieu series, Hilbert–Eisenstein series and their generalized Omega functions, in T. Rassias, G. V. Milovanoviæ (Eds.), Analytic Number Theory, Approximation Theory, and Special Functions - In Honor of Hari M. Srivastava, Springer, New York, 2014, pp. 775–808.
    MathSciNet

  2. P. Cerone and C. T. Lenard, On integral forms of generalized Mathieu series, JIPAM J. Inequal. Pure Appl. Math. 4 (2003), Art. No. 100, pp. 1–11.
    MathSciNet

  3. M. A. Chaudhry, A. Qadir, M. T. Boudjelkha, M. Rafique and S. M. Zubair, Extended Riemann zeta functions, Rocky Mountain J. Math. 31 (2001), 1237–1263.
    MathSciNet     CrossRef

  4. J. Choi and H. M. Srivastava, Mathieu series and associated sums involving the Zeta functions, Comput. Math. Appl. 59 (2010), 861–867.
    MathSciNet     CrossRef

  5. P. H. Diananda, Some inequalities related to an inequality of Mathieu, Math. Ann. 250 (1980), 95–98.
    MathSciNet     CrossRef

  6. N. Elezović, H. M. Srivastava and Ž. Tomovski, Integral representations and integral transforms of some families of Mathieu type series, Integral Transforms Spec. Functions 19 (2008), 481–495.
    MathSciNet     CrossRef

  7. O. Emersleben, Über die Reihe Σk=1 k/(k2+r2)2, Math. Ann. 125 (1952), 165–171.
    MathSciNet     CrossRef

  8. A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. 2, McGraw–Hill, New York, Toronto & London, 1953.
    MathSciNet

  9. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, Academic Press, New York, 1965.
    MathSciNet

  10. I. Krasikov, Approximations for the Bessel and Airy functions with an explicit error term, LMS J. Comput. Math. 17 (2014), 209–225.
    MathSciNet     CrossRef

  11. I. Krasikov, On the Bessel function Jν(x) in the transition region, LMS J. Comput. Math. 17 (2014), 273–281.
    MathSciNet     CrossRef

  12. L. Landau, Monotonicity and bounds on Bessel functions, in: Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory (Berkeley, CA, 1999), pp. 147–154. Electron. J. Differ. Equ. Conf. 4, Southwest Texas State Univ., San Marcos, TX, 2000.
    MathSciNet

  13. E. C. J. von Lommel, Die Beugungserscheinungen einer kreisrunden Öffnung und eines kreisrunden Schirmchens theoretisch und experimentell bearbeitet, Abh. der math. phys. Classe der k. b. Akad. der Wiss. (München) 15 (1884-1886), 229–328.

  14. E. C. J. von Lommel, Die Beugungserscheinungen geradlinig begrenzter Schirme, Abh. der math. phys. Classe der k. b. Akad. der Wiss. (München) 15 (1884–1886), 529–664.

  15. É. L. Mathieu, Traité de Physique Mathématique VI-VII: Théorie de l’élasticité des corps solides, Gauthier–Villars, Paris, 1890.

  16. G. V. Milovanović and T. K. Pogány, New integral forms of generalized Mathieu series and related applications, Appl. Anal. Discrete Math. 7 (2013), 180–192.
    MathSciNet     CrossRef

  17. S. Minakshisundaram and O. Szász, On absolute convergence of multiple Fourier series, Trans. Amer. Math. Soc. 61 (1947), 36–53.
    MathSciNet     CrossRef

  18. A. Ya. Olenko, Upper bound on √x Jν(x) and its applications, Integral Transforms Spec. Functions 17 (2006), 455–467.
    MathSciNet     CrossRef

  19. R. K. Parmar and T. K. Pogány, Extended Srivastava’s triple hypergeometric HA,p,q function and related bounding inequalities, J. Contemp. Math. Anal. 52 (2017), 261–272; Izv. Nats. Akad. Nauk Armenii Mat. 52 (2017), 48–63.

  20. T. K. Pogány, H. M. Srivastava and Ž. Tomovski, Some families of Mathieu a–series and alternating Mathieu a–series, Appl. Math. Comp. 173 (2006), 69–108.
    MathSciNet     CrossRef

  21. T. K. Pogány and Ž. Tomovski, Bounds improvement for alternating Mathieu type series, J. Math. Inequal. 4 (2010), 315–324.
    MathSciNet     CrossRef

  22. H. M. Srivastava and T. K. Pogány, Inequalities for a unified Voigt functions in several variables, Russ. J. Math. Phys. 14 (2007), 194–200.
    MathSciNet     CrossRef

  23. Ž. Tomovski and T. K. Pogány, New upper bounds for Mathieu-type series, Banach J. Math. Anal. 3 (2009), 9–15.
    MathSciNet     CrossRef

  24. G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, London, 1922.
    MathSciNet


Rad HAZU Home Page