Rad HAZU, Matematičke znanosti, Vol. 22 (2018), 107-117.
ON p–EXTENDED MATHIEU SERIES
Tibor K. Pogány and Rakesh K. Parmar
Faculty of Maritime Studies, University of Rijeka, 51 000 Rijeka, Croatia
Institute of Applied Mathematics, Óbuda University, 1034 Budapest, Hungary
e-mail: poganj@pfri.hr
Department of Mathematics, Government College of Engineering and Technology,
Bikaner 334004, Rajasthan State, India
e-mail: rakeshparmar27@gmail.com
Abstract. Motivated by several generalizations of the well–known
Mathieu series, the main object of this paper is to introduce new extension
of generalized Mathieu series and to derive various integral representations
of such series. Finally, master bounding inequality is established using the
newly derived integral expression.
2010 Mathematics Subject Classification.
26D15, 33E20, 44A10, 33C05, 44A20.
Key words and phrases. Mathieu series, Generalized Mathieu series, Mellin and
Laplace transforms, Bessel function of the first kind, Extended Riemann Zeta function.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/90836cwk4y
References:
- Á. Baricz, P. L. Butzer and T. K. Pogány,
Alternating Mathieu series, Hilbert–Eisenstein series and their generalized Omega functions,
in T. Rassias, G. V. Milovanoviæ
(Eds.), Analytic Number Theory, Approximation Theory, and Special Functions
- In Honor of Hari M. Srivastava, Springer, New York, 2014, pp. 775–808.
MathSciNet
- P. Cerone and C. T. Lenard, On integral forms of generalized Mathieu series, JIPAM
J. Inequal. Pure Appl. Math. 4 (2003), Art. No. 100, pp. 1–11.
MathSciNet
- M. A. Chaudhry, A. Qadir, M. T. Boudjelkha, M. Rafique and S. M. Zubair, Extended
Riemann zeta functions, Rocky Mountain J. Math. 31 (2001), 1237–1263.
MathSciNet
CrossRef
- J. Choi and H. M. Srivastava, Mathieu series and associated sums involving the Zeta
functions, Comput. Math. Appl. 59 (2010), 861–867.
MathSciNet
CrossRef
- P. H. Diananda, Some inequalities related to an inequality of Mathieu, Math. Ann.
250 (1980), 95–98.
MathSciNet
CrossRef
- N. Elezović, H. M. Srivastava and Ž. Tomovski, Integral representations and integral
transforms of some families of Mathieu type series, Integral Transforms Spec. Functions
19 (2008), 481–495.
MathSciNet
CrossRef
- O. Emersleben, Über die Reihe Σk=1∞
k/(k2+r2)2, Math. Ann. 125 (1952), 165–171.
MathSciNet
CrossRef
- A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental
Functions, Vol. 2, McGraw–Hill, New York, Toronto & London, 1953.
MathSciNet
- I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, Academic
Press, New York, 1965.
MathSciNet
- I. Krasikov, Approximations for the Bessel and Airy functions with an explicit error
term, LMS J. Comput. Math. 17 (2014), 209–225.
MathSciNet
CrossRef
- I. Krasikov, On the Bessel function Jν(x) in the transition region,
LMS J. Comput. Math. 17 (2014), 273–281.
MathSciNet
CrossRef
- L. Landau, Monotonicity and bounds on Bessel functions, in: Proceedings of the Symposium
on Mathematical Physics and Quantum Field Theory (Berkeley, CA, 1999), pp.
147–154. Electron. J. Differ. Equ. Conf. 4, Southwest Texas State Univ., San Marcos,
TX, 2000.
MathSciNet
- E. C. J. von Lommel, Die Beugungserscheinungen einer kreisrunden Öffnung und
eines kreisrunden Schirmchens theoretisch und experimentell bearbeitet, Abh. der
math. phys. Classe der k. b. Akad. der Wiss. (München) 15 (1884-1886), 229–328.
- E. C. J. von Lommel, Die Beugungserscheinungen geradlinig begrenzter Schirme, Abh.
der math. phys. Classe der k. b. Akad. der Wiss. (München) 15 (1884–1886), 529–664.
- É. L. Mathieu, Traité de Physique Mathématique VI-VII: Théorie de l’élasticité des
corps solides, Gauthier–Villars, Paris, 1890.
- G. V. Milovanović and T. K. Pogány, New integral forms of generalized Mathieu series
and related applications, Appl. Anal. Discrete Math. 7 (2013), 180–192.
MathSciNet
CrossRef
- S. Minakshisundaram and O. Szász, On absolute convergence of multiple Fourier series,
Trans. Amer. Math. Soc. 61 (1947), 36–53.
MathSciNet
CrossRef
- A. Ya. Olenko, Upper bound on √x Jν(x)
and its applications, Integral Transforms
Spec. Functions 17 (2006), 455–467.
MathSciNet
CrossRef
- R. K. Parmar and T. K. Pogány, Extended Srivastava’s triple hypergeometric
HA,p,q function and related bounding inequalities,
J. Contemp. Math. Anal. 52 (2017), 261–272; Izv. Nats. Akad. Nauk Armenii Mat. 52 (2017), 48–63.
- T. K. Pogány, H. M. Srivastava and Ž. Tomovski, Some families of Mathieu a–series
and alternating Mathieu a–series, Appl. Math. Comp. 173 (2006), 69–108.
MathSciNet
CrossRef
- T. K. Pogány and Ž. Tomovski, Bounds improvement for alternating Mathieu type
series, J. Math. Inequal. 4 (2010), 315–324.
MathSciNet
CrossRef
- H. M. Srivastava and T. K. Pogány, Inequalities for a unified Voigt functions in several
variables, Russ. J. Math. Phys. 14 (2007), 194–200.
MathSciNet
CrossRef
- Ž. Tomovski and T. K. Pogány, New upper bounds for Mathieu-type series,
Banach J. Math. Anal. 3 (2009), 9–15.
MathSciNet
CrossRef
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University
Press, London, 1922.
MathSciNet
Rad HAZU Home Page