Rad HAZU, Matematičke znanosti, Vol. 22 (2018), 93-106.
INEQUALITIES VIA (p,r)-CONVEX FUNCTIONS
Muhammad Aslam Noor, Khalida Inayat Noor and Sabah Iftikhar
Mathematics, COMSATS Institute of Information Technology, Islamabad, Pakistan
e-mail: noormaslam@gmail.com
Mathematics, COMSATS Institute of Information Technology, Islamabad, Pakistan
e-mail: khalidan@gmail.com
Mathematics, COMSATS Institute of Information Technology, Islamabad, Pakistan
e-mail: sabah.iftikhar22@gmail.com
Abstract. The main aim of this paper is to introduce a new class
of convex functions, which is called (p,r)-convex functions. We derive
some new Hermite-Hadamard type integral inequalities via (p,r)-convex
functions. Some special cases are also discussed. These results can be
considered as significant improvement of the known results. The technique
and ideas of this paper may motivate further research.
2010 Mathematics Subject Classification.
26D15, 26A51.
Key words and phrases. r-convex functions, p-convex functions, Hermite-Hadamard
type inequality.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/m8vqrtz169
References:
- G. Cristescu and L. Lupsa, Non-connected Convexities and Applications, Kluwer Academic
Publisher, Dordrechet, Holland, 2002.
MathSciNet
CrossRef
- P. M. Gill, C. E. M. Pearce and J. Pečarić,
Hadamard’s inequality for r-convex functions,
J. Math. Anal. Appl. 215 (1997), 461–470.
MathSciNet
CrossRef
- J. Hadamard, Etude sur les proprietes des fonctions entieres et en particulier dune
fonction consideree par Riemann, J. Math. Pure Appl. 58 (1893), 171–215.
- L. V. Hap and N. V. Vinh, On some Hadamard-type inequalities for (h,r)-convex
functions, Int. J. Math. Anal. (Ruse) 7(42) (2013), 2067–2075.
MathSciNet
- I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions,
Hacettepe J. Math. Stats. 43 (2014), 935–942.
MathSciNet
- N. P. N. Ngoc, N. V. Vinh and P. T. T. Hien, Integral inequalities of Hadamard type
for r-convex functions, Int. Math. Forum 4(35) (2009), 1723–1728.
MathSciNet
- C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications,
Springer-Verlag, New York, 2006.
MathSciNet
CrossRef
- M. A. Noor, K. I. Noor and S. Iftikhar, Nonconvex functions and integral inequalities,
Punjab Univ. J. Math. (Lahore) 47 (2015), 19–27.
MathSciNet
- M. A. Noor, K. I. Noor and U. Awan, Some new estimates of Hermite-Hadamard
inequalities via harmonically r-convex functions, Matematiche (Catania) 71 (2016),
117–127.
MathSciNet
- M. A. Noor, K. I. Noor and S. Iftikhar, Hermite-Hadamard inequalities for harmonic
nonconvex functions, MAGNT Research Report 4 (2016), 24–40.
- M. A. Noor, K. I. Noor and S. Iftikhar, On harmonic (h,r)-convex functions,
Proc. Jangjeon Math. Soc. 21 (2018), 239-251.
MathSciNet
- M. A. Noor, K. I. Noor and S. Iftikhar, Integral inequalities for differentiable pharmonic
convex functions, Filomat 31 (2017), 6575-6584.
MathSciNet
CrossRef
- C. E. M. Pearce, J. Pečarić and V. Šimić,
Stolarsky means and Hadamard’s inequality,
J. Math. Anal. Appl. 220 (1998), 99–109.
MathSciNet
CrossRef
- C. E. M. Pearce, J. Pečarić and V. Šimić, On weighted generalized logarithmic means,
Houston J. Math. 24 (1998), 459–465.
MathSciNet
- J. Park, On the Hermite-Hadamard-like type inequalities for co-ordinated (s,r)-convex
mappings, Int. J. Pure Appl. Math. 74(2) (2012), 251-263.
- J. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings and
Statistical Applications, Academic Press, New York, 1992.
MathSciNet
- M. Z. Sarikaya, H. Yaldiz and H. Bozkurt, On the Hadamard type integral inequalities
involving several differentiable (φ-r)-convex functions, 2012, arXiv:1203.2278.
- K. S. Zhang and J. P. Wan, p-convex functions and their properties, Pure Appl. Math. (Xi'an)
23 (2007), 130–133.
MathSciNet
Rad HAZU Home Page