Rad HAZU, Matematičke znanosti, Vol. 22 (2018), 77-91.
WEIGHTED HARDY-TYPE INEQUALITIES INVOLVING FRACTIONAL CALCULUS OPERATORS
Sajid Iqbal, Josip Pečarić, Muhammad Samraiz and Živorad Tomovski
Department of Mathematics, University of Sargodha, Sub-Campus Mianwali, Mianwali, Pakistan
e-mail: sajid_uos2000@yahoo.com, dr.sajid@uos.edu.pk
Faculty of Textile Technology, University of Zagreb, Zagreb, Croatia
e-mail: pecaric@element.hr
Department of Mathematics, University of Sargodha, Sargodha, Pakistan
e-mail: msamraiz@uos.edu.pk
Faculty of Mathematics and Natural Sciences, Gazi Baba bb, 1000 Skopje, Macedonia
e-mail: tomovski@pmf.ukim.mk
Abstract. The aim of this paper is to give a new class of general
weighted Hardy-type inequalities involving an arbitrary convex function
with some applications of generalized fractional calculus convolutive operators
which contain Gauss-hypergeometric function, generalized Mittag-Leffler function
and Hilfer fractional derivative operator, in the kernel.
2010 Mathematics Subject Classification.
26D15, 26D10, 26A33, 34B27.
Key words and phrases. Inequalities, convex function, fractional derivatives, generalized
fractional integral operator.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/ydkx2cr509
References:
- A. Čižmešija, K. Krulić and J. Pečarić,
On a new class of refined discrete Hardy-type inequalities, Banach J. Math. Anal. 4 (2010), 122-145.
MathSciNet
CrossRef
- A. Čižmešija, K. Krulić and J. Pečarić,
Some new refined Hardy-type inequalities with kernels, J. Math. Inequal. 4 (2010), 481-503.
MathSciNet
CrossRef
- A. Čimeija, K. Krulić and J. Pečarić,
A new class of general refined Hardy type inequalities
with kernels, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 17 (2013), 5380.
MathSciNet
- L. Curiel and L. Galue, A generalization of the integral operators involving the Gauss
hypergeometric function, Rev. Técn. Fac. Ingr. Univ. Zulia 19 (1996), 1722.
MathSciNet
- N. Elezović, K. Krulić and J. Pečarić,
Bounds for Hardy type differences, Acta Math.
Sin. (Engl. Ser.) 27 (2011), 671684.
MathSciNet
CrossRef
- I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Seventh
Edition, Elsevier Inc., Amsterdam, 2007.
MathSciNet
- R. Hilfer, Y. Luchko and Ž. Tomovski, Operational method for solution of fractional
differential equations with generalized Riemann-Liouville fractional derivative, Fract.
Calc. Appl. Anal. 12 (2009), 299318.
MathSciNet
- S. Iqbal, K. Krulić Himmelreich and J. Pečarić,
A new class of Hardy-type integral inequalities, Math. Balkanica (N. S.) 28, Fasc. 1-2, (2014), 3-16.
- S. Iqbal, K. Krulić Himmelreich and J. Pečarić,
On a new class of Hardy-type inequalities with fractional integrals and fractional derivatives,
Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 18 (2014) 91105.
MathSciNet
- S. Iqbal, J. Pečarić, M. Samraiz and Ž. Tomovski,
Hardy-type inequalities for generalized fractional integral operators, Tbil. Math. J. 10 (2017), 7590.
MathSciNet
CrossRef
- S. Kaijser, L. Nikolova, L.-E. Persson and A. Wedestig, Hardy type inequalities via
convexity, Math. Inequal. Appl. 8 (2005), 403417.
MathSciNet
CrossRef
- K. Krulić, J. Pečarić and L.-E. Persson,
Some new Hardy-type inequalities with general kernels, Math. Inequal. Appl. 12 (2009), 473485.
MathSciNet
CrossRef
- K. Krulić, J. Pečarić and D. Pokaz,
Inequalities of Hardy and Jensen, Zagreb, Element, 2013.
MathSciNet
- G. M. Mittag-Leffler, Sur la nouvelle fonction, C. R. Acad. Sci. Paris. 137 (1903),
554558.
- T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function
in the kernel, Yokohama Math. J. 19 (1971), 715.
MathSciNet
- T. O. Salim, Some properties relating to the generalized Mittag-Leffler function,
Adv. Appl. Math. Anal. 4 (2009), 2130.
- T. O. Salim and A. W. Faraj, A generalization of Mittag-Leffler function and integral
operator associated with fractional calculus, J. Fract. Calc. Appl. 5 (2012), 1-13.
- A. K. Shukla and J. C. Prajapati, On a generalization of Mittag-Leffler function and
its properties, J. Math. Anal. Appl. 336 (2007), 797811.
MathSciNet
CrossRef
- H. M. Srivastava and Ž. Tomovski, Fractional calculus with an integral operator containing
generalized Mittag-Leffler function in the kernal, Appl. Math. Comput. 211
(2009), 198210.
MathSciNet
CrossRef
- Ž. Tomovski, R. Hilfer and H. M. Srivastava, Fractional and Operational Calculus
with Generalized Fractional Derivative Operators and Mittag-Leffler Type Functions,
Integral Transforms Spec. Funct. 21 (2010), 797-814.
MathSciNet
CrossRef
- A. Wiman, Über den fundamentalsatz in der theorie der functionen, Acta Math. 29
(1905), 191201.
MathSciNet
CrossRef
Rad HAZU Home Page