Rad HAZU, Matematičke znanosti, Vol. 22 (2018), 63-75.
HERMITE-HADAMARD TYPE INEQUALITIES FOR
GENERALIZED (s,m,φ)-PREINVEX GODUNOVA-LEVIN FUNCTIONS
Artion Kashuri and Rozana Liko
Department of Mathematics, Faculty of Technical Science, University "Ismail Qemali", Vlora, Albania
e-mail: artionkashuri@gmail.com
Department of Mathematics, Faculty of Technical Science, University "Ismail Qemali", Vlora, Albania
e-mail: rozanaliko86@gmail.com
Abstract. In the present paper, a new class of generalized
(s,m,φ)-preinvex Godunova-Levin function of the second kind is introduced.
Moreover, some left inequalities of Gauss-Jacobi type quadrature
formula are given and some Hermite-Hadamard type inequalities for generalized
(s,m,φ)-preinvex Godunova-Levin functions of the second kind via
classical integrals are established. At the end, some applications to special
means are given.
2010 Mathematics Subject Classification.
26A51, 26A33, 26D07, 26D10, 26D15.
Key words and phrases. (s,m)-Godunova-Levin function, Hölder’s inequality, power
mean inequality, m-invex, P-function.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/m16wjc6rl9
References:
- P. S. Bullen, Handbook of Means and Their Inequalities, Kluwer Academic Publishers,
Dordrecht, 2003.
MathSciNet
CrossRef
- S. S. Dragomir,
Inequalities of Hermite-Hadamard type for h-convex functions on
linear spaces, Proyecciones 34 (2015), 323-341.
MathSciNet
CrossRef
- S. S. Dragomir, n-points inequalities of Hermite-Hadamard type for h-convex functions
on linear spaces, Armen. J. Math. 8 (2016), 38-57.
MathSciNet
- S. S. Dragomir, J. Pečarić and L. E. Persson,
Some inequalities of Hadamard type,
Soochow J. Math. 21 (1995), 335–341.
MathSciNet
- T. S. Du, J. G. Liao and Y. J. Li,
Properties and integral inequalities of Hadamard-
Simpson type for the generalized (s,m)-preinvex functions, J. Nonlinear Sci. Appl. 9
(2016), 3112–3126.
MathSciNet
CrossRef
- E. K. Godunova and V. I. Levin, Inequalities for functions of a broad class that contains
convex, monotone and some other forms of functions, Numer. Math. Math. Phys. 166
(1985), 138–142.
MathSciNet
- E. K. Godunova and V. I. Levin, Neravenstva dlja funkcii sirokogo klassa, soderzascego
vypuklye, monotonnye i nekotorye drugie vidy funkii, Vycislitel. Mat. i. Fiz. Mezvuzov.
Sb. Nauc. Trudov, MGPI, Moskva. 9 (1985), 138-142.
- H. Kavurmaci, M. Avci and M. E. Özdemir, New inequalities of Hermite-Hadamard
type for convex functions with applications, arXiv:1006.1593v1 [math. CA], 2010.
- W. Liu, New integral inequalities involving beta function via P-convexity, Miskolc
Math. Notes 15 (2014), 585–591.
MathSciNet
- W. Liu, W. Wen and J. Park, Hermite-Hadamard type inequalities for MT-convex
functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl. 9
(2016), 766–777.
MathSciNet
CrossRef
- D. S. Mitrinović and J. Pečarić, Note on a class of functions of Godunova and Levin,
C. R. Math. Rep. Acad. Sci. Can. 12 (1990), 33–36.
MathSciNet
- D. S. Mitrinović, J. Pečarić and A. M. Fink, Classical and new inequalities in analysis,
Kluwer Academic, Dordrecht, 1993.
MathSciNet
CrossRef
- M. A. Noor, K. I. Noor and M. U. Awan, Fractional Ostrowski inequalities for
(s,m)-Godunova-Levin functions, Facta Univ. Ser. Math. Inform. 30 (2015), 489–499.
MathSciNet
- M. E. Özdemir, E. Set and M. Alomari, Integral inequalities via several kinds of convexity,
Creat. Math. Inform. 20 (2011), 62–73.
MathSciNet
- D. D. Stancu, G. Coman and P. Blaga, Analiza numerica si teoria aproximarii,
Cluj-Napoca: Presa Universitara Clujeana, 2, 2002.
MathSciNet
Rad HAZU Home Page