Rad HAZU, Matematičke znanosti, Vol. 22 (2018), 39-61.
TWO DIVISORS OF (n2+1)/2 SUMMING UP TO
δn + δ ± 2, δ EVEN
Sanda Bujačić Babić
Department of Mathematics, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
e-mail: sbujacic@math.uniri.hr
Abstract. We prove there exist infinitely many odd integers n for
which there exists a pair of positive divisors d1, d2 of
(n2+1)/2 such that
d1 + d2 = δn + ε
for ε = δ + 2,
where δ is an even positive integer. Furthermore, we deal with the same
problem where ε = δ - 2 and δ ≡ 4, 6 (mod 8). Using different approaches
and methods we obtain similar but conditional results since the proofs rely
on Schinzel’s Hypothesis H.
2010 Mathematics Subject Classification.
11D09, 11A55.
Key words and phrases. Sum of divisors, continued fractions, Pell equation, Legendre
symbol.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/yk3jwhrjd9
References:
- M. Ayad,
Critical points, critical values of a prime polynomial,
Complex Var. Elliptic Equ. 51 (2006), 143-160.
MathSciNet
CrossRef
- M. Ayad and F. Luca,
Two divisors of (n2+1)/2 summing up to n + 1,
J. Théor. Nombres Bordeaux 19 (2007), 561-566.
MathSciNet
- S. Bujačić,
Two divisors of (n2+1)/2 summing up to δn+ε, for δ and ε even,
Miskolc Math. Notes 15 (2014), 333-344.
MathSciNet
- A. Dujella and F. Luca,
On the sum of two divisors of (n2+1)/2,
Period. Math. Hungar. 65 (2012), 83-96.
MathSciNet
CrossRef
- A. Schinzel and W. Sierpiński,
Sur certaines hypothèses concernant les nombres premiers,
Acta Arith. 4 (1958), 185-208, Corrigendum, 5 (1959), 259.
MathSciNet
CrossRef
Rad HAZU Home Page