Rad HAZU, Matematičke znanosti, Vol. 21 (2017), 179-203.

ON THE QUOTIENT SHAPES OF VECTORIAL SPACES

Nikica Uglešić

Veli Råt, Dugi Otok, Hrvatska
e-mail: nuglesic@unizd.hr


Abstract.   The quotient shapes of vectorial spaces are considered - algebraically and topologically, especially, of the normed spaces. In the algebraic case, all the shape classifications and the isomorphism classification coincide. However, in the general topological case and, especially, in the normed case, the quotient shape classifications are strictly coarser than the isomorphism classification.

2010 Mathematics Subject Classification.   Primary 54E99; Secondary 55P55.

Key words and phrases.   Concrete category, (quotient) shape, (topological, normed) vectorial space, (continuous) linear function, quotient (topological, normed) vectorial space, dimension, infinite cardinal.


Full text (PDF) (free access)

DOI: http://doi.org/10.21857/mzvkptxze9


References:

  1. K. Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968), 223-254.
    MathSciNet

  2. K. Borsuk, Theory of Shape, Monografie Matematyczne 59, Polish Scientific Publishers, Warszawa, 1975.
    MathSciNet

  3. J.-M. Cordier and T. Porter, Shape Theory: Categorical Methods of Approximation, Ellis Horwood Ltd., Chichester, 1989. (Dover edition, 2008.)
    MathSciNet

  4. J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1978.
    MathSciNet

  5. J. Dydak and J. Segal, Shape theory: An introduction, Lecture Notes in Math. 688, Springer-Verlag, Berlin, 1978.
    MathSciNet

  6. H. Herlich and G. E. Strecker, Category Theory: An Introduction, Allyn and Bacon Inc., Boston, 1973.
    MathSciNet

  7. S. Kurepa, Funkcionalna analiza: elementi teorije operatora, Školska knjiga, Zagreb, 1990.

  8. N. Koceić Bilan and N. Uglešić, The coarse shape, Glas. Mat. Ser. III 42(62) (2007), 145-187.
    MathSciNet     CrossRef

  9. S. Mardešić and J. Segal, Shape Theory, North-Holland, Amsterdam, 1982.
    MathSciNet

  10. N. Uglešić, The shapes in a concrete category, Glas. Mat. Ser. III 51(71) (2016), 255-306.
    MathSciNet     CrossRef

  11. N. Uglešić and B. Červar, The concept of a weak shape type, Int. J. Pure Appl. Math. 39 (2007), 363-428.
    MathSciNet


Rad HAZU Home Page