Rad HAZU, Matematičke znanosti, Vol. 21 (2017), 179-203.
ON THE QUOTIENT SHAPES OF VECTORIAL SPACES
Nikica Uglešić
Veli Råt, Dugi Otok, Hrvatska
e-mail: nuglesic@unizd.hr
Abstract. The quotient shapes of vectorial spaces are considered - algebraically and
topologically, especially, of the normed spaces. In the algebraic case, all
the shape classifications and the isomorphism classification coincide.
However, in the general topological case and, especially, in the normed case,
the quotient shape classifications are strictly coarser than the isomorphism classification.
2010 Mathematics Subject Classification.
Primary 54E99; Secondary 55P55.
Key words and phrases. Concrete category, (quotient) shape, (topological, normed) vectorial space,
(continuous) linear function, quotient (topological, normed) vectorial space,
dimension, infinite cardinal.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/mzvkptxze9
References:
- K. Borsuk, Concerning homotopy properties of
compacta, Fund. Math. 62 (1968), 223-254.
MathSciNet
- K. Borsuk, Theory of Shape, Monografie
Matematyczne 59, Polish Scientific Publishers, Warszawa, 1975.
MathSciNet
- J.-M. Cordier and T. Porter, Shape Theory: Categorical
Methods of Approximation, Ellis Horwood Ltd., Chichester, 1989. (Dover
edition, 2008.)
MathSciNet
- J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1978.
MathSciNet
- J. Dydak and J. Segal, Shape theory: An introduction,
Lecture Notes in Math. 688, Springer-Verlag, Berlin, 1978.
MathSciNet
- H. Herlich and G. E. Strecker, Category Theory: An
Introduction, Allyn and Bacon Inc., Boston, 1973.
MathSciNet
- S. Kurepa, Funkcionalna analiza: elementi teorije
operatora, Školska knjiga, Zagreb, 1990.
- N. Koceić Bilan and N. Uglešić, The coarse shape,
Glas. Mat. Ser. III 42(62) (2007), 145-187.
MathSciNet
CrossRef
- S. Mardešić and J. Segal, Shape Theory,
North-Holland, Amsterdam, 1982.
MathSciNet
- N. Uglešić, The shapes in a concrete category,
Glas. Mat. Ser. III 51(71) (2016), 255-306.
MathSciNet
CrossRef
- N. Uglešić and B. Červar, The
concept of a weak shape type, Int. J. Pure Appl. Math.
39 (2007), 363-428.
MathSciNet
Rad HAZU Home Page