Rad HAZU, Matematičke znanosti, Vol. 21 (2017), 99-116.
SHADOW LIMIT FOR PARABOLIC-ODE SYSTEMS THROUGH A CUT-OFF ARGUMENT
Anna Marciniak-Czochra and Andro Mikelić
Institute of Applied Mathematics, IWR and BIOQUANT,
University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
e-mail: anna.marciniak@iwr.uni-heidelberg.de
Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208,
Institut Camille Jordan, 43 blvd. du 11 novembre 1918,
F-69622 Villeurbanne cedex, France
e-mail: andro.mikelic@univ-lyon1.fr
Abstract. We study a shadow limit (the infinite diffusion coefficient-limit)
of a system of ODEs coupled with a diagonal system of semilinear
heat equations in a bounded domain with homogeneous Neumann boundary
conditions. The recent convergence proof by the energy approach from
[19], developed for the case of a single PDE, is revisited and generalized to
the case of the coupled system. Furthermore, we give a new convergence
proof relying on the introduction of a well-prepared related cut-off system
and on a construction of the barrier functions and comparison test functions,
new in the literature. It leads to the L∞-estimates proportional to
the inverse of the diffusion coefficient.
2010 Mathematics Subject Classification.
35B20, 34E13, 35B25, 35B41, 35K57.
Key words and phrases. Shadow limit, reaction-diffusion equations, model reduction.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/ydkx2c3rp9
References:
- A. Bobrowski, Singular perturbations involving fast diffusion,
J. Math. Anal. Appl. 427 (2015), 1004-1026.
MathSciNet
CrossRef
- J. Carr, Applications of Centre Manifold Theory, Springer-Verlag, New York, 1981.
MathSciNet
- L. Y. Chen, N. Goldenfeld and Y. Oono,
Renormalization group theory for global asymptotic analysis,
Phys. Rev. Lett. 73 (1994), 1311-1315.
MathSciNet
CrossRef
- H. Chiba, C1 approximation of vector fields based on the renormalization group method,
SIAM J. Appl. Dyn. Syst. 7 (2008), 895-932.
MathSciNet
CrossRef
- P. Gray and S. K. Scott, Autocatalytic reactions in the isothermal continuous stirred tank reactor: isolas and
other forms of multistability, Chem. Eng. Sci. 38 (1983), 29-43.
CrossRef
- R. E. Lee DeVille, A. Harkin, M. Holzer, K. Josić and T. Kaper,
Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations,
Phys. D 237 (2008), 1029-1052.
MathSciNet
CrossRef
- A. Gierer and H. Meinhardt, A theory of biological pattern formation,
Kybernetik 12 (1972), 30-39.
CrossRef
- J. K. Hale and K. Sakamoto, Shadow systems and attractors in reaction-diffusion
equations, Appl. Anal. 32 (1989), 287-303.
MathSciNet
CrossRef
- D. Henry, Geometric Theory of semilinear Parabolic Equations, Lecture Notes in
Math. 840, Springer-Verlag, 1981.
MathSciNet
- S. Hock, Y. Ng, J. Hasenauer, D. Wittmann, D. Lutter, D. Trümbach, W. Wurst, N. Prakash and F. J. Theis,
Sharpening of expression domains induced by transcription and microRNA regulation within
a spatio-temporal model of mid-hindbrain boundary formation, BMC Syst Biol 7 (2013), 48.
CrossRef
- J. P. Keener, Activators and inhibitors in pattern formation,
Studies in Applied Mathematics 59 (1978), 1-23.
MathSciNet
CrossRef
- V. Klika, R. E. Baker, D. Headon and E. A. Gaffney,
The influence of receptor-mediated interactions on reaction-diffusion mechanisms of cellular self-organization,
Bull. Math. Biol. 74 (2012), 935-957.
MathSciNet
CrossRef
- O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva,
Linear and Quasi-linear Equations of Parabolic Type, Translations of Mathematical Monographs Reprint Vol. 23,
American Mathematical Society, Providence, RI, 1968.
MathSciNet
- I. Lengyel and I. R. Epstein, A chemical approach to designing Turing patterns in reaction-diffusion systems,
Proc. Natl. Acad. Sci. USA 89 (1992), 3977-3979.
CrossRef
- A. Marciniak-Czochra, S. Härting, G. Karch and K. Suzuki,
Dynamical spike solutions in a nonlocal model of pattern formation, arXiv:1307.6236 (2013).
- A. Marciniak-Czochra, G. Karch and K. Suzuki, Unstable patterns in
reaction-diffusion model of early carcinogenesis,
J. Math. Pures Appl. 99 (2013), 509-543.
MathSciNet
CrossRef
- A. Marciniak-Czochra and M. Kimmel, Modelling of early lung cancer progression:
influence of growth factor production and cooperation between partially transformed cells,
Math. Models Methods Appl. Sci. 17 (2007), suppl., 1693-1719.
MathSciNet
CrossRef
- A. Marciniak-Czochra and M. Kimmel, Reaction-diffusion model of early carcinogenesis:
the effects of influx of mutated cells, Math. Model. Nat. Phenom. 3 (2008), 90-114.
MathSciNet
CrossRef
- A. Marciniak-Czochra and A. Mikelić, Shadow limits via the renormalization group method
and the center manifold method, Vietnam J. Math. 45 (2017), 103-125.
MathSciNet
CrossRef
- J. D. Murray, Mathematical biology II. Spatial models and biomedical applications. 3rd
edition, Interdisciplinary Applied Mathematics 18, Springer-Verlag, New York, 2003.
MathSciNet
- F. Rothe, Global Solutions of
Reaction-Diffusion Systems, Lecture notes in mathematics 1072, Springer-Verlag,
Berlin, 1984.
MathSciNet
CrossRef
Rad HAZU Home Page