Rad HAZU, Matematičke znanosti, Vol. 21 (2017), 89-98.

TWO SIMPLE OBSERVATIONS ON REPRESENTATIONS OF METAPLECTIC GROUPS

Marko Tadić

Department of Mathematics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
e-mail: tadic@math.hr


Abstract.   M. Hanzer and I. Matić have proved that the genuine unitary principal series representations of the metaplectic groups are irreducible. A simple consequence of that paper is a criterion for the irreducibility of the non-unitary principal series representations of the metaplectic groups that we give in this paper.

2010 Mathematics Subject Classification.   Primary: 22D12, Secondary: 22E50, 22D30, 11F85.

Key words and phrases.   Metaplectic groups, non-archimedean local fields, parabolic induction, principal series representations, irreducibility.


Full text (PDF) (free access)

DOI: http://doi.org/10.21857/m16wjcp6r9


References:

  1. D. Ban and C. Jantzen, The Langlands quotient theorem for finite central extensions of p-adic groups, Glas. Mat. Ser. III 48(68) (2013), 313-334.
    MathSciNet     CrossRef

  2. D. Ban and C. Jantzen, The Langlands quotient theorem for finite central extensions of p-adic groups II: intertwining operators and duality, Glas. Mat. Ser. III 51(71) (2016), 153-163.
    MathSciNet     CrossRef

  3. I. N. Bernshtein and A. V. Zelevinskii, Representations of the group GL(n,F), where F is a local non-Archimedean field, in Russian: Uspehi Mat. Nauk 31 (1976), no. 3 (189), 5-70 (in English: Russian Math. Surveys 31 (1976), no. 3, 5-70).
    MathSciNet

  4. I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive p-adic groups I, Ann. Sci. École Norm Sup. (4) 10 (1977), 441-472.
    MathSciNet     CrossRef

  5. W. Casselman, Introduction to the theory of admissible representations of p-adic reductive groups, preprint (http://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf).

  6. I. Ciganović and N. Grbac, The Zelevinsky classification of unramified representations of the metaplectic group, J. Algebra 454 (2016), 357-399.
    MathSciNet     CrossRef

  7. M. Hanzer and I. Matić, The unitary dual of p-adic Sp(2), Pacific J. Math. 248 (2010), 107-137.
    MathSciNet     CrossRef

  8. M. Hanzer and I. Matić, Irreducibility of the unitary principal series of p-adic Sp(n), Manuscripta Math. 132 (2010), 539-547.
    MathSciNet     CrossRef

  9. M. Hanzer and G. Muić, Parabolic induction and Jacquet functors for metaplectic groups, J. Algebra 323 (2010), 241--260.
    MathSciNet     CrossRef

  10. M. Hanzer and G. Muić, Rank one reducibility for metaplectic groups via theta correspondence, Canad. J. Math. 63 (2011), 591-615.
    MathSciNet     CrossRef

  11. S. S. Kudla, Notes on the local theta correspondence, lectures at the European School in Group Theory, 1996, preprint (http://www.math.toronto.edu/~skudla/castle.pdf).

  12. I. Matić, Strongly positive representations of metaplectic groups, J. Algebra 334 (2011), 255-274.
    MathSciNet     CrossRef

  13. R. Rao, On some explicit formulas in the theory of Weil representation, Pacific J. Math. 157 (1993), 335-371.
    MathSciNet

  14. M. Tadić, Representations of p-adic symplectic groups, Compositio Math. 90 (1994), 123-181.
    MathSciNet

  15. M. Tadić, Structure arising from induction and Jacquet modules of representations of classical p-adic groups, J. Algebra 177 (1995), 1-33.
    MathSciNet     CrossRef

  16. A. V. Zelevinsky, Induced representations of reductive p-adic groups II. On irreducible representations of GL(n), Ann. Sci. École Norm. Sup. (4) 13 (1980), 165-210.
    MathSciNet     CrossRef


Rad HAZU Home Page