**Abstract.** M. Hanzer and I. Matić have proved that the genuine unitary principal
series representations of the metaplectic groups are irreducible. A simple consequence of that paper
is a criterion for the irreducibility of the non-unitary principal series representations of the
metaplectic groups that we give in this paper.

**2010 Mathematics Subject Classification.**
Primary: 22D12, Secondary: 22E50, 22D30, 11F85.

**Key words and phrases.** Metaplectic groups, non-archimedean local fields, parabolic induction,
principal series representations, irreducibility.

DOI: http://doi.org/10.21857/m16wjcp6r9

**References:**

- D. Ban and C. Jantzen,
*The Langlands quotient theorem for finite central extensions of*, Glas. Mat. Ser. III*p*-adic groups**48(68)**(2013), 313-334.

MathSciNet CrossRef - D. Ban and C. Jantzen,
*The Langlands quotient theorem for finite central extensions of*, Glas. Mat. Ser. III*p*-adic groups II: intertwining operators and duality**51(71)**(2016), 153-163.

MathSciNet CrossRef - I. N. Bernshtein and A. V. Zelevinskii,
*Representations of the group GL(*, in Russian: Uspehi Mat. Nauk*n,F*), where*F*is a local non-Archimedean field**31**(1976), no. 3 (189), 5-70 (in English: Russian Math. Surveys**31**(1976), no. 3, 5-70).

MathSciNet - I. N. Bernstein and A. V. Zelevinsky,
*Induced representations of reductive*, Ann. Sci. École Norm Sup. (4)*p*-adic groups I**10**(1977), 441-472.

MathSciNet CrossRef - W. Casselman,
*Introduction to the theory of admissible representations of*, preprint (*p*-adic reductive groups`http://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf`). - I. Ciganović and N. Grbac,
*The Zelevinsky classification of unramified representations of the metaplectic group*, J. Algebra**454**(2016), 357-399.

MathSciNet CrossRef - M. Hanzer and I. Matić,
*The unitary dual of*, Pacific J. Math.*p*-adic Sp(2)**248**(2010), 107-137.

MathSciNet CrossRef - M. Hanzer and I. Matić,
*Irreducibility of the unitary principal series of*, Manuscripta Math.*p*-adic Sp(n)**132**(2010), 539-547.

MathSciNet CrossRef - M. Hanzer and G. Muić,
*Parabolic induction and Jacquet functors for metaplectic groups*, J. Algebra**323**(2010), 241--260.

MathSciNet CrossRef - M. Hanzer and G. Muić,
*Rank one reducibility for metaplectic groups via theta correspondence*, Canad. J. Math.**63**(2011), 591-615.

MathSciNet CrossRef - S. S. Kudla,
*Notes on the local theta correspondence*, lectures at the European School in Group Theory, 1996, preprint (`http://www.math.toronto.edu/~skudla/castle.pdf`). - I. Matić,
*Strongly positive representations of metaplectic groups*, J. Algebra**334**(2011), 255-274.

MathSciNet CrossRef - R. Rao,
*On some explicit formulas in the theory of Weil representation*, Pacific J. Math.**157**(1993), 335-371.

MathSciNet - M. Tadić,
*Representations of*, Compositio Math.*p*-adic symplectic groups**90**(1994), 123-181.

MathSciNet - M. Tadić,
*Structure arising from induction and Jacquet modules of representations of classical*, J. Algebra*p*-adic groups**177**(1995), 1-33.

MathSciNet CrossRef - A. V. Zelevinsky,
*Induced representations of reductive*, Ann. Sci. École Norm. Sup. (4)*p*-adic groups II. On irreducible representations of GL(*n*)**13**(1980), 165-210.

MathSciNet CrossRef