Rad HAZU, Matematičke znanosti, Vol. 21 (2017), 53-74.

SOME EXTENSIONS OF THE NOTION OF LOOP GRASSMANNIANS

Ivan Mirković

Department of Mathematics and Statistics, University of Massachusetts at Amherst, Amherst MA 01003-4515, USA
e-mail: mirkovic@math.umass.edu


Abstract.   We report an ongoing attempt to establish in algebraic geometry certain analogues of topological ideas, The main goal is to associate to a scheme X over a commutative ring k its “relative motivic homology” which is again an algebro geometric object over the base k. This is motivated by Number Theory, so the Poincaré duality for this relative motivic homology should be an algebro geometric incarnation of Class Field Theory.

2010 Mathematics Subject Classification.   11S37, 14F42.

Key words and phrases.   Loop Grassmannian, class field theory, motivic homology.


Full text (PDF) (free access)

DOI: http://doi.org/10.21857/yvjrdcnqpy


References:

  1. P. Baumann and J. Kamnitzer, Preprojective algebras and MV polytopes, arXiv:1009.2469.

  2. A. Beilinson and V. Drinfeld, Chiral Algebras, Colloquium Publications 51, American Mathematical Society, Providence, RI, 2004.
    MathSciNet     CrossRef

  3. A. Braverman, M. Finkelberg and H. Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensional N=4 gauge theories, II, arXiv:1601.03586.

  4. R. Bezrukavnikov, M. Finkelberg and V. Schechtman, Factorizable sheaves and quantum groups, Lecture Notes in Mathematics 1691, Springer-Verlag, Berlin, 1998.
    MathSciNet     CrossRef

  5. A. Braverman and M. Finkelberg, Pursuing the double affine Grassmannian, part I: Transversal slices via instantons on Ak-singularities, arXiv:0711.2083; part II: Convolution, Adv. Math. 230 (2012), 414-432; part III: Convolution with affine Zastava, arXiv:1010.3499.
    MathSciNet     CrossRef

  6. C. E. Contou-Carrère, Corps de classes local géométrique relatif, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 481-484.
    MathSciNet

  7. V. Chari and A. Pressley, Weyl modules for classical and quantum affine algebras, Represent. Theory 5 (2001), 191-223.
    MathSciNet     CrossRef

  8. B. Feigin and S. Loktev, On generalized Kostka polynomials and the quantum Verlinde rule, in: Differential topology, infinite-dimensional Lie algebras, and applications, Amer. Math. Soc. Transl. Ser. 2 194, Adv. Math. Sci. 44, Amer. Math. Soc., Providence, RI, 1999, pp. 61-79.
    MathSciNet     CrossRef

  9. B. Feigin and S. Loktev, Multi-dimensional Weyl modules and symmetric functions, Comm. Math. Phys. 251 (2004), 427-445.
    MathSciNet     CrossRef

  10. B. Feigin, A. N. Kirillov and S. Loktev, Combinatorics and geometry of higher level Weyl modules, in: Moscow Seminar on Mathematical Physics. II, Amer. Math. Soc. Transl. Ser. 2 221, Adv. Math. Sci. 60, Amer. Math. Soc., Providence, RI, 2007, pp. 33-47.
    MathSciNet     CrossRef

  11. M. Finkelberg and I. Mirković, Semiinfinite Flags. I. Case of the global curve P1, arXiv:9707010.

  12. I. Mirković, Loop Grassmannians in the framework of local spaces over a curve, in: Recent advances in representation theory, quantum groups, algebraic geometry, and related topics, Contemp. Math. \textbf{623}, Amer. Math. Soc., Providence, RI, 2014, pp. 215-226.
    MathSciNet     CrossRef

  13. I. Mirković and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), 95-143.
    MathSciNet     CrossRef

  14. D. Osipov and X. Zhu, The two-dimensional Contou-Carrère symbol and reciprocity laws, J. Algebraic Geom. 25 (2016), 703-774.
    MathSciNet     CrossRef

  15. B. Webster, Koszul duality between Higgs and Coulomb categories O, arXiv:1611.06541.
    MathSciNet     CrossRef


Rad HAZU Home Page