Rad HAZU, Matematičke znanosti, Vol. 21 (2017), 29-52.
SOME RESULTS ON THE SCHWARTZ SPACE OF Γ \ G
Goran Muić
Department of Mathematics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
e-mail: gmuic@math.hr
Abstract. Let G be a connected semisimple Lie group with finite center.
Let Γ ⊂ G be a discrete subgroup. We study closed admissible
irreducible subrepresentations of the space of distributions
S(Γ \ G)' defined by Casselman, and their
relations to automorphic forms on Γ \ G when Γ
is a congruence subgroup.
2010 Mathematics Subject Classification.
11E70, 22E50.
Key words and phrases. Automorphic forms, Schwartz space, semisimple Lie groups.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/y54jof6pnm
References:
- J. Arthur, The endoscopic classification of representations. Orthogonal and symplectic groups,
American Mathematical Society Colloquium Publications 61, American Mathematical Society,
Providence, RI, 2013.
MathSciNet
CrossRef
- J. Arthur, An introduction to the trace formula,
in: Harmonic analysis, the trace formula, and Shimura varieties,
Clay Math. Proc. 4, Amer. Math. Soc., Providence, RI, 2005, pp. 1-263.
MathSciNet
- A. Borel, Density properties for certain subgroups of semi-simple groups without
compact components, Ann. of Math. (2) 72 (1960), 179-188.
MathSciNet
CrossRef
- A. Borel, Introduction to automorphic forms, in:
Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965),
Amer. Math. Soc., Providence, RI, 1966, pp. 199-210.
MathSciNet
- A. Borel, Automorphic forms on SL2(R), Cambridge Tracts in Mathematics 130,
Cambridge University Press, 1997.
MathSciNet
CrossRef
- A. Borel and H. Jacquet, Automorphic forms and automorphic representations, in:
Proc. Sympos. Pure Math. XXXIII, Automorphic forms, representations and L-functions
(Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1,
Amer. Math. Soc., Providence, RI, 1979, pp. 189-202.
MathSciNet
- W. Casselman, Canonical extensions of Harish-Chandra modules to
representations of G, Canad. J. Math. 41 (1989), 385-438.
MathSciNet
CrossRef
- W. Casselman, Introduction to the Schwartz space of Γ \ G,
Canad. J. Math. 41 (1989), 285-320.
MathSciNet
CrossRef
- L. Clozel, On limit multiplicities of discrete series representations in
spaces of automorphic forms, Invent. Math. 83 (1986), 265-284.
MathSciNet
CrossRef
- J. W. Cogdell, Lectures on L-functions, converse theorems, and functoriality for
GLn, in: Lectures on automorphic L-functions, Fields Inst. Monogr. 20,
Amer. Math. Soc., Providence, RI, 2004, pp. 1-96.
MathSciNet
- J. Dixmier and P. Malliavin, Factorisations de fonctions et de vecteurs indéfiniment
différentiables, Bull. Sci. Math. (2) 102 (1978), 307-330.
MathSciNet
- Harish-Chandra, Discrete series for semisimple
Lie groups II, Acta Math. 116 (1966), 1-111.
MathSciNet
CrossRef
- R. P. Langlands, On the notion of an automorphic representation. A supplement to the preceding paper,
in:
Proc. Sympos. Pure Math. XXXIII, Automorphic forms, representations and L-functions
(Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1,
Amer. Math. Soc., Providence, RI, 1979, pp. 203--209.
MathSciNet
- E. M. Lapid, A remark on Eisenstein series, in: Eisenstein series and applications,
Progr. Math. 258, Birkhäuser Boston, Boston, MA, 2008, pp. 239-249.
MathSciNet
CrossRef
- D. Miličić, Asymptotic behavior of matrix coefficients of
the discrete series, Duke Math. J. 44 (1977), 59-88.
MathSciNet
CrossRef
- S. Miller and W. Schmid, On the rapid decay of cuspidal automorphic forms,
Adv. Math. 231 (2012), 940-964.
MathSciNet
CrossRef
- G. Muić, On a construction of certain classes of cuspidal automorphic forms via Poincaré series,
Math. Ann. 343 (2009), 207-227.
MathSciNet
CrossRef
- G. Muić, Spectral decomposition of compactly supported Poincaré
series and existence of cusp forms, Compositio Math. 146 (2010), 1-20.
MathSciNet
CrossRef
- G. Muić, Fourier coefficients of automorphic forms and integrable discrete series,
J. Funct. Anal. 270 (2016), 3639-3674.
MathSciNet
CrossRef
- G. Muić, Smooth cuspidal automorphic forms and integrable discrete series,
preprint (arXiv:1610.05483v2).
- C. Mœglin and J. L. Waldspurger,
Décomposition spectrale et séries d'Eisenstein. Une paraphrase de l'Écriture,
Progress in Mathematics 113, Birkhäuser Verlag, Basel, 1994.
MathSciNet
- G. Savin, Limit multiplicities of cusp forms, Invent. Math. 95 (1989), 149-159.
MathSciNet
CrossRef
- N. R. Wallach, On the constant term of a square integrable automorphic form, in:
Operator algebras and group representations, Vol. II (Neptun, 1980), Monogr. Stud. Math. 18,
Pitman, Boston, MA, 1984, pp. 227-237.
MathSciNet
- N. R. Wallach, Real reductive groups I,
Academic Press, Boston, 1988.
MathSciNet
- N. R. Wallach, Real reductive groups II,
Academic Press, Boston, 1992.
MathSciNet
- N. R. Wallach, A lecture delivered at W. Schmid's birthday conference (2013),
http://www.math.harvard.edu/conferences/schmid_2013/docs/wallach.pdf
Rad HAZU Home Page