Rad HAZU, Matematičke znanosti, Vol. 21 (2017), 21-27.
ROOT SEPARATION FOR REDUCIBLE MONIC POLYNOMIALS OF ODD DEGREE
Andrej Dujella and Tomislav Pejković
Department of Mathematics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
e-mail: duje@math.hr
Department of Mathematics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
e-mail: pejkovic@math.hr
Abstract. We study root separation of reducible monic integer
polynomials of odd degree. Let H(P) be the naïve height, sep(P) the
minimal distance between two distinct roots of an integer polynomial P(x)
and sep(P) = H(P)-e(P).
Let er*(d) = lim supdeg(P)=d, H(P)→+∞
e(P),
where the lim sup is taken over the reducible monic integer polynomials
P(x) of degree d. We prove that er*(d) ≤ d - 2.
We also obtain a lower bound for er*(d) for d odd,
which improves previously known lower bounds for er*(d) when d ∈ {5, 7, 9}.
2010 Mathematics Subject Classification.
11C08, 12D10, 11B37.
Key words and phrases. Integer polynomials, root separation.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/mnlqgcj04y
References:
- Y. Bugeaud, Approximation by algebraic numbers,
Cambridge Tracts in Mathematics 160, Cambridge University Press, Cambridge, 2004.
MathSciNet
CrossRef
- Y. Bugeaud and A. Dujella, Root separation for irreducible integer
polynomials, Bull. Lond. Math. Soc. 43 (2011), 1239-1244.
MathSciNet
CrossRef
- Y. Bugeaud and A. Dujella, Root separation for reducible integer polynomials,
Acta Arith. 162 (2014), 393-403.
MathSciNet
CrossRef
- Y. Bugeaud, A. Dujella, T. Pejković and B. Salvy,
Absolute real root separation, Amer. Math. Monthly, to appear.
- Y. Bugeaud and M. Mignotte, Polynomial root separation, Intern. J.
Number Theory 6 (2010), 587-602.
MathSciNet
CrossRef
- A. Dujella and T. Pejković, Root separation for reducible monic quartics,
Rend. Semin. Mat. Univ. Padova 126 (2011), 63-72.
MathSciNet
CrossRef
- J.-H. Evertse, Distances between the conjugates of an algebraic number,
Publ. Math. Debrecen 65 (2004), 323-340.
MathSciNet
- K. Mahler, An inequality for the discriminant of a polynomial, Michigan
Math. J. 11 (1964), 257-262.
MathSciNet
- T. Pejković, P-adic root separation for quadratic and cubic polynomials,
Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 20 (2016), 9-18.
MathSciNet
- A. Schönhage, Polynomial root separation examples, J. Symbolic
Comput. 41 (2006), 1080-1090.
MathSciNet
CrossRef
- N. P. Smart, The Algorithmic Resolution of Diophantine Equations,
Cambridge University Press, Cambridge, 1998.
MathSciNet
CrossRef
Rad HAZU Home Page