Rad HAZU, Matematičke znanosti, Vol. 21 (2017), 9-20.
COMPUTABILITY OF A WEDGE OF CIRCLES
Zvonko Iljazović and Lucija Validžić
Department of Mathematics, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: zilj@math.hr
Department of Mathematics, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: lucija.validzic@math.hr
Abstract. We examine conditions under which a semicomputable
set in a computable metric space is computable. In particular, we focus
on wedge of circles and prove that each semicomputable wedge of circles is
computable.
2010 Mathematics Subject Classification.
03D78.
Key words and phrases. Computable set, semicomputable set, wedge of circles.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/ygjwrc6j1y
References:
- V. Brattka,
Plottable real number functions and the computable graph theorem,
SIAM J. Comput. 38 (2008), 303-328.
MathSciNet
CrossRef
- V. Brattka and G. Presser, Computability on subsets of metric spaces,
Theoret. Comput. Sci. 305 (2003), 43-76.
MathSciNet
CrossRef
- K. Burnik and Z. Iljazović, Computability of 1-manifolds,
Log. Methods Comput. Sci. 10 (2014), 2:8, 1-28.
MathSciNet
CrossRef
- S. B. Cooper, Computability Theory, Chapman and Hall/CRC, 2004.
MathSciNet
- Z. Iljazović and L. Validžić,
Computable neighbourhoods of points in semicomputable manifolds,
Ann. Pure Appl. Logic 168 (2017), 840-859.
MathSciNet
CrossRef
- Z. Iljazović,
Compact manifolds with computable boundaries,
Log. Methods Comput. Sci. 9 (2013), (4:19), 1-22.
MathSciNet
CrossRef
- Z. Iljazović,
Chainable and Circularly Chainable Co-r.e. Sets in Computable Metric Spaces,
J.UCS 15 (2009), 1206-1235.
MathSciNet
- Z. Iljazović and B. Pažek,
Computable intersection points, preprint.
- Z. Iljazović and B. Pažek,
Co-c.e. sets with disconnected complements,
Theory Comput. Syst. (2017).
CrossRef
- T. Kihara, Incomputability of Simply Connected Planar Continua,
Computability 1 (2012), 131-152.
MathSciNet
CrossRef
- J. S. Miller, Effectiveness for Embedded Spheres and Balls, in: Electronic
Notes in Theoretical Computer Science, Volume 66, Elsevier, 2002, pp. 127-138.
CrossRef
- J. R. Munkres, Topology, Prentice Hall, 2000.
MathSciNet
- M. B. Pour-El and J. I. Richards, Computability in Analysis and Physics, Springer, Berlin, 1989.
MathSciNet
CrossRef
- E. Specker, Der Satz vom Maximum in der rekursiven Analysis,
in: Constructivity in Mathematics (A. Heyting, ed.), North Holland Publishing Co., Amsterdam, 1959, pp. 254-265.
MathSciNet
- K. Weihrauch, Computable Analysis, Springer, Berlin, 2000.
MathSciNet
CrossRef
- K. Weihrauch, Computability on computable metric spaces,
Theoret. Comput. Sci. 113 (1993), 191-210.
MathSciNet
CrossRef
Rad HAZU Home Page