Rad HAZU, Matematičke znanosti, Vol. 20 (2016), 83-95.

STEINER POINT OF A TRIANGLE IN AN ISOTROPIC PLANE

Ružica Kolar-Šuper, Zdenka Kolar-Begović and Vladimir Volenec

Faculty of Education, University of Osijek, 31 000 Osijek, Croatia
e-mail: rkolar@foozos.hr

Department of Mathematics, University of Osijek, 31 000 Osijek, Croatia
e-mail: zkolar@mathos.hr

Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: volenec@math.hr


Abstract.   The concept of the Steiner point of a triangle in an isotropic plane is defined in this paper. Some different concepts connected with the introduced concepts such as the harmonic polar line, Ceva’s triangle, the complementary point of the Steiner point of an allowable triangle are studied. Some other statements about the Steiner point and the connection with the concept of the complementary triangle, the anticomplementary triangle, the tangential triangle of an allowable triangle as well as the Brocard diameter and the Euler circle are also proved.

2010 Mathematics Subject Classification.   51N25.

Key words and phrases.   Isotropic plane, Steiner point, Steiner ellipse, Ceva’s triangle, orthic triangle.


Full text (PDF) (free access)


References:

  1. J. Beban-Brkić, R. Kolar-Šuper, Z. Kolar-Begović and V.Volenec, On Feuerbach's theorem and a pencil of circles in the isotropic lane, J. Geom. Graph. 10 (2006), 125-132.
    MathSciNet

  2. E. Cèsaro, Sur l’emploi des coordonnées barycentriques, Mathesis 10 (1890), 177-190.

  3. W. Gallatly, Note on the Steiner point, Amer. Math. Monthly 15 (1908), 226-227.
    MathSciNet     CrossRef

  4. W. Godt, Zur Figur des Feuerbach'schen Kreises, Arch. Math. Phys. (2) 4 (1886), 436-441.

  5. W. Godt, Ueber den Feuerbach'schen Kreis und die Steiner’sche Curve vierter Ordnung und dritter Classe, Jahresber. Deutsch. Math. Verein. 4 (1894–95), 161-162.

  6. Z. Kolar-Begović, R. Kolar-Šuper, J. Beban-Brkić and V. Volenec, Symmedians and the symmedian center of the triangle in an isotropic plane, Math. Pannon. 17 (2006), 287-301.
    MathSciNet

  7. R. Kolar-Šuper, Z. Kolar-Begović, V. Volenec and J. Beban-Brkić, Metrical relationships in a standard triangle in an isotropic plane, Math. Commun. 10 (2005), 149-157.
    MathSciNet

  8. A. Mineur, Sur le point de Steiner, Mathesis 41 (1927), 414-415.

  9. H. Sachs, Ebene isotrope Geometrie, Vieweg–Verlag, Braunschweig–Wiesbaden, 1987.
    MathSciNet     CrossRef

  10. K. Strubecker, Geometrie in einer isotropen Ebene, Math. Naturwiss. Unterricht 15 (1962), 297-306, 343-351, 385-394.
    MathSciNet

  11. V. Thébault, Sur les points de Steiner et de Tarry, Ann. Soc. Sci. Bruxelles 64 (1950), 131-138; Mathesis 60 (1951), supplement, 8pp.
    MathSciNet

  12. V. Volenec, Z. Kolar-Begović and R. Kolar-Šuper, Steiner’s ellipses in an isotropic plane, Math. Pannon. 21 (2010), 229-238.
    MathSciNet

  13. F. Weaver, Sur deux points remarquables du triangle, Mathesis 42 (1928), 293-303.


Rad HAZU Home Page