Rad HAZU, Matematičke znanosti, Vol. 20 (2016), 83-95.
STEINER POINT OF A TRIANGLE IN AN ISOTROPIC PLANE
Ružica Kolar-Šuper, Zdenka Kolar-Begović and Vladimir Volenec
Faculty of Education, University of Osijek, 31 000 Osijek, Croatia
e-mail: rkolar@foozos.hr
Department of Mathematics, University of Osijek, 31 000 Osijek, Croatia
e-mail: zkolar@mathos.hr
Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: volenec@math.hr
Abstract. The concept of the Steiner point of a triangle in an
isotropic plane is defined in this paper. Some different concepts connected
with the introduced concepts such as the harmonic polar line, Ceva’s triangle,
the complementary point of the Steiner point of an allowable triangle
are studied. Some other statements about the Steiner point and the
connection with the concept of the complementary triangle, the anticomplementary
triangle, the tangential triangle of an allowable triangle as well
as the Brocard diameter and the Euler circle are also proved.
2010 Mathematics Subject Classification.
51N25.
Key words and phrases. Isotropic plane, Steiner point, Steiner ellipse,
Ceva’s triangle, orthic triangle.
Full text (PDF) (free access)
References:
- J. Beban-Brkić, R. Kolar-Šuper, Z. Kolar-Begović and V.Volenec,
On Feuerbach's theorem and a pencil of circles in the isotropic lane,
J. Geom. Graph. 10 (2006), 125-132.
MathSciNet
- E. Cèsaro, Sur l’emploi des coordonnées barycentriques, Mathesis 10 (1890), 177-190.
- W. Gallatly, Note on the Steiner point, Amer. Math. Monthly 15 (1908), 226-227.
MathSciNet
CrossRef
- W. Godt, Zur Figur des Feuerbach'schen Kreises, Arch. Math. Phys. (2) 4 (1886),
436-441.
- W. Godt, Ueber den Feuerbach'schen Kreis und die Steiner’sche Curve vierter
Ordnung und dritter Classe, Jahresber. Deutsch. Math. Verein. 4 (1894–95), 161-162.
- Z. Kolar-Begović, R. Kolar-Šuper, J. Beban-Brkić and V. Volenec, Symmedians and the
symmedian center of the triangle in an isotropic plane, Math. Pannon. 17 (2006), 287-301.
MathSciNet
- R. Kolar-Šuper, Z. Kolar-Begović, V. Volenec and J. Beban-Brkić,
Metrical relationships in a standard triangle in an isotropic plane, Math. Commun. 10 (2005), 149-157.
MathSciNet
- A. Mineur, Sur le point de Steiner, Mathesis 41 (1927), 414-415.
- H. Sachs, Ebene isotrope Geometrie, Vieweg–Verlag, Braunschweig–Wiesbaden, 1987.
MathSciNet
CrossRef
- K. Strubecker, Geometrie in einer isotropen Ebene, Math. Naturwiss. Unterricht 15
(1962), 297-306, 343-351, 385-394.
MathSciNet
- V. Thébault, Sur les points de Steiner et de Tarry, Ann. Soc. Sci. Bruxelles 64 (1950),
131-138; Mathesis 60 (1951), supplement, 8pp.
MathSciNet
- V. Volenec, Z. Kolar-Begović and R. Kolar-Šuper, Steiner’s ellipses in an isotropic
plane, Math. Pannon. 21 (2010), 229-238.
MathSciNet
- F. Weaver, Sur deux points remarquables du triangle, Mathesis 42 (1928), 293-303.
Rad HAZU Home Page