Rad HAZU, Matematičke znanosti, Vol. 20 (2016), 71-81.

ITERATIONS OF THE GENERALIZED GRAM-SCHMIDT PROCEDURE FOR GENERATING PARSEVAL FRAMES

Tomislav Berić

Department of Mathematics, University of Zagreb, Bijenička 30, 10 000 Zagreb, Croatia
e-mail: tberic@math.hr


Abstract.   In this paper we describe some properties of the generalized Gram–Schmidt procedure (GGSP) for generating Parseval frames which was first introduced in [3]. Next we investigate the iterations of the procedure and its limit. In the end we give some examples of the iterated procedure.

2010 Mathematics Subject Classification.   42C15, 94A12.

Key words and phrases.   Finite-dimensional Hilbert space, Gram–Schmidt orthogonalization, linear dependence, Parseval frame, redundancy, iterations.


Full text (PDF) (free access)


References:

  1. P. Casazza, The art of frame theory, Taiwanese J. Math. 4 (2000), 129-201.
    MathSciNet

  2. P. Casazza, M. Fickus and D. Mixon, Auto-tuning unit norm frames, Appl. Comput. Harmonic Anal. 32 (2012), 1-15.
    MathSciNet     CrossRef

  3. P. Casazza and G. Kutyniok, A generalization of Gram-Schmidt orthogonalization generating all Parseval frames, Adv. Comput. Math. 27 (2007), 65-78.
    MathSciNet     CrossRef

  4. O. Christensen, An introduction to frames and Riesz bases, Birkhäuser, Boston, 2003.
    MathSciNet     CrossRef

  5. R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366.
    MathSciNet

  6. K. Gröchenig, Acceleration of the frame algorithm, Trans. Signal. Process. 41 (1993), 3331-3340.
    CrossRef


Rad HAZU Home Page