Rad HAZU, Matematičke znanosti, Vol. 20 (2016), 51-70.
HARMONIC MT-PREINVEX FUNCTIONS AND INTEGRAL INEQUALITIES
Muhammad Aslam Noor, Khalida Inayat Noor and Sabah Iftikhar
Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
e-mail: noormaslam@gmail.com
e-mail: khalidanoor@hotmail.com
e-mail: sabah.iftikhar22@gmail.com
Abstract. In this paper, we introduce a new class of harmonic preinvex
functions, which is called harmonic MT-preinvex functions. Some new
Hermite-Hadamard type inequalities for harmonic MT-preinvex functions
are derived. Some special cases are also discussed. Results proved in this
paper represent refinements and improvements of the known results.
2010 Mathematics Subject Classification.
26D15, 26D10, 90C23.
Key words and phrases. Harmonic convex functions, Harmonic preinvex functions,
MT-Harmonic convex functions, Hermite-Hadamard type inequality
Full text (PDF) (free access)
References:
- G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Generalized convexity and
inequalitiesy, J. Math. Anal. Appl. 335 (2007), 1294-1308.
MathSciNet
CrossRef
- A. Akkurt, M. E. Yildirim and H. Yildirim, On Hermite-Hadamard inequalities for
differentiable λ-preinvex functions via Riemann-Liouville fractional integrals, preprint,
2016, arXiv:1603.02070v1.
- B. D. Craven, Duality for generalized convex fractional programs, in: S. Schaible and
W.T. Ziemba (Eds.), Generalized Concavity in Optimization and Economics, Academic
Press, New York, 1981, 473-489.
- G. Cristescu and L. Lupsa, Non-connected Convexities and Applications,
Kluwer Academic Publisher, Dordrechet, Holland, 2002.
MathSciNet
CrossRef
- G. Cristescu, Improved integral inequalities for product of convex functions,
J. Inequal. Pure Appl. Math. 6(2) (2005), 35.
MathSciNet
- J. Hadamard, Etude sur les proprietes des fonctions entieres e.t en particulier dune
fonction consideree par Riemann, J. Math. Pure Appl. 58 (1893), 171-215.
- C. Hermite, Sur deux limites d’une intégrale d´finie, Mathesis 3 (1883), 82.
- M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl.
80 (1981), 545-550.
MathSciNet
CrossRef
- I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions,
Hacet. J. Math. Stats. 43(6) (2014), 935-942.
MathSciNet
- S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal.
Appl. 189 (1995), 901-908.
MathSciNet
CrossRef
- C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications,
Springer-Verlag, New York, 2006.
MathSciNet
CrossRef
- M. A. Noor, Variational-like inequalities, Optimization 30 (1994), 323-330.
MathSciNet
CrossRef
- M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J.
Math. Anal. Approx. Theory 2 (2007), 126-131.
MathSciNet
- M. A. Noor, Hadamard integral inequalities for product of two preinvex function,
Nonlinear Anal. Forum 14 (2009), 167-173.
MathSciNet
- M. A. Noor, On Hadamard integral inequalities involving two log-preinvex functions,
J. Inequal. Pure Appl. Math. 8(3) (2007), 1-14.
MathSciNet
- M. A. Noor and K. I. Noor, Some characterization of strongly preinvex functions, J.
Math. Anal. Appl. 316 (2006), 697-706.
MathSciNet
CrossRef
- M. A. Noor, K. I. Noor, S. Iftikhar and K. Al-bany, Inequalities for MT-harmonic
convex functions, J. Adv. Math. Stud. 9(2) (2016), 194-207.
MathSciNet
- M. A. Noor, K. I. Noor and S. Iftikhar, Hermite-Hadamard inequalities for harmonic
preinvex functions, Saussurea 6(1) (2016), 34-53.
- M. A. Noor, K. I. Noor and S. Iftikhar, Integral inequalities for differentiable relative
harmonic preinvex functions (survey), TWMS J. Pure Appl. Math 7(1) (2016), 3-19.
- J. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings and
Statistical Applications, Academic Press, New York, 1992.
MathSciNet
- G. H. Toader, Some generalizations of the convexity, Proc. Colloq. Approx. Optim,
Cluj-Napoca, 1984, 329-338.
MathSciNet
- M. Tunc, On some new inequalities for convex functions, Turkish J. Math. 36 (2012),
245-251.
MathSciNet
- M. Tunc, Ostrowski type inequalities for functions whose derivatives are MT-convex,
J. Comput. Anal. Appl. 17 (2014), 691-696.
MathSciNet
- M. Tunc, Y. Subas and I. Karabayir, On some Hadamard type inequalities for
MT-convex functions, Int. J. Open Problems Compt. Math. 6(2) (2013), 102-113.
- M. Tunc, H. Yildirim, On MT-convexity, preprint, 2012, arXiv:1205.5453v1.
- T. Weir and B. Mond, Preinvex functions in multiobjective optimization, J. Math.
Anal. Appl. 136 (1988), 29-38.
MathSciNet
CrossRef
Rad HAZU Home Page