Rad HAZU, Matematičke znanosti, Vol. 20 (2016), 51-70.

HARMONIC MT-PREINVEX FUNCTIONS AND INTEGRAL INEQUALITIES

Muhammad Aslam Noor, Khalida Inayat Noor and Sabah Iftikhar

Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
e-mail: noormaslam@gmail.com
e-mail: khalidanoor@hotmail.com
e-mail: sabah.iftikhar22@gmail.com


Abstract.   In this paper, we introduce a new class of harmonic preinvex functions, which is called harmonic MT-preinvex functions. Some new Hermite-Hadamard type inequalities for harmonic MT-preinvex functions are derived. Some special cases are also discussed. Results proved in this paper represent refinements and improvements of the known results.

2010 Mathematics Subject Classification.   26D15, 26D10, 90C23.

Key words and phrases.   Harmonic convex functions, Harmonic preinvex functions, MT-Harmonic convex functions, Hermite-Hadamard type inequality


Full text (PDF) (free access)


References:

  1. G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Generalized convexity and inequalitiesy, J. Math. Anal. Appl. 335 (2007), 1294-1308.
    MathSciNet     CrossRef

  2. A. Akkurt, M. E. Yildirim and H. Yildirim, On Hermite-Hadamard inequalities for differentiable λ-preinvex functions via Riemann-Liouville fractional integrals, preprint, 2016, arXiv:1603.02070v1.

  3. B. D. Craven, Duality for generalized convex fractional programs, in: S. Schaible and W.T. Ziemba (Eds.), Generalized Concavity in Optimization and Economics, Academic Press, New York, 1981, 473-489.

  4. G. Cristescu and L. Lupsa, Non-connected Convexities and Applications, Kluwer Academic Publisher, Dordrechet, Holland, 2002.
    MathSciNet     CrossRef

  5. G. Cristescu, Improved integral inequalities for product of convex functions, J. Inequal. Pure Appl. Math. 6(2) (2005), 35.
    MathSciNet

  6. J. Hadamard, Etude sur les proprietes des fonctions entieres e.t en particulier dune fonction consideree par Riemann, J. Math. Pure Appl. 58 (1893), 171-215.

  7. C. Hermite, Sur deux limites d’une intégrale d´finie, Mathesis 3 (1883), 82.

  8. M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (1981), 545-550.
    MathSciNet     CrossRef

  9. I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stats. 43(6) (2014), 935-942.
    MathSciNet

  10. S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl. 189 (1995), 901-908.
    MathSciNet     CrossRef

  11. C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications, Springer-Verlag, New York, 2006.
    MathSciNet     CrossRef

  12. M. A. Noor, Variational-like inequalities, Optimization 30 (1994), 323-330.
    MathSciNet     CrossRef

  13. M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory 2 (2007), 126-131.
    MathSciNet

  14. M. A. Noor, Hadamard integral inequalities for product of two preinvex function, Nonlinear Anal. Forum 14 (2009), 167-173.
    MathSciNet

  15. M. A. Noor, On Hadamard integral inequalities involving two log-preinvex functions, J. Inequal. Pure Appl. Math. 8(3) (2007), 1-14.
    MathSciNet

  16. M. A. Noor and K. I. Noor, Some characterization of strongly preinvex functions, J. Math. Anal. Appl. 316 (2006), 697-706.
    MathSciNet     CrossRef

  17. M. A. Noor, K. I. Noor, S. Iftikhar and K. Al-bany, Inequalities for MT-harmonic convex functions, J. Adv. Math. Stud. 9(2) (2016), 194-207.
    MathSciNet

  18. M. A. Noor, K. I. Noor and S. Iftikhar, Hermite-Hadamard inequalities for harmonic preinvex functions, Saussurea 6(1) (2016), 34-53.

  19. M. A. Noor, K. I. Noor and S. Iftikhar, Integral inequalities for differentiable relative harmonic preinvex functions (survey), TWMS J. Pure Appl. Math 7(1) (2016), 3-19.

  20. J. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, New York, 1992.
    MathSciNet

  21. G. H. Toader, Some generalizations of the convexity, Proc. Colloq. Approx. Optim, Cluj-Napoca, 1984, 329-338.
    MathSciNet

  22. M. Tunc, On some new inequalities for convex functions, Turkish J. Math. 36 (2012), 245-251.
    MathSciNet

  23. M. Tunc, Ostrowski type inequalities for functions whose derivatives are MT-convex, J. Comput. Anal. Appl. 17 (2014), 691-696.
    MathSciNet

  24. M. Tunc, Y. Subas and I. Karabayir, On some Hadamard type inequalities for MT-convex functions, Int. J. Open Problems Compt. Math. 6(2) (2013), 102-113.

  25. M. Tunc, H. Yildirim, On MT-convexity, preprint, 2012, arXiv:1205.5453v1.

  26. T. Weir and B. Mond, Preinvex functions in multiobjective optimization, J. Math. Anal. Appl. 136 (1988), 29-38.
    MathSciNet     CrossRef


Rad HAZU Home Page