Rad HAZU, Matematičke znanosti, Vol. 20 (2016), 27-35.

THE EXTENDIBILITY OF D(4)-PAIRS {F2k, F2k+6} AND {P2k, P2k+4}

Ljubica Baćić Đuračković and Alan Filipin

Primary School Nikola Andrić, 32000 Vukovar, Croatia
e-mail: ljubica.bacic@skole.hr

Faculty of Civil Engineering, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: filipin@master.grad.hr


Abstract.   Let k ≥ 1 be an integer and let Fk be the k-th Fibonacci number and Pk k-th Pell number. In this paper we prove that the pairs {F2k, F2k+6} and {P2k, P2k+4} cannot be extended to a D(4)-quintuple.

2010 Mathematics Subject Classification.   11D09, 11J68.

Key words and phrases.   Diophantine tuples, simultaneous Diophantine equations.


Full text (PDF) (free access)


References:

  1. Lj. Baćić and A. Filipin, On the family of D(4)-triples {k - 2, k + 2, 4k3 - 4k}, Bull. Belg. Math. Soc. Simon Stevin 20(4) (2013), 777-787.
    MathSciNet

  2. Lj. Baćić and A. Filipin, On the extensibility of D(4)-pair {k-2, k+2}, J. Comb. Number Theory 5(3) (2013), 181-197.
    MathSciNet

  3. Lj. Baćić and A. Filipin, The extendibility of D(4)-pairs, Math. Commun. 18 (2013), 447-456.
    MathSciNet

  4. Lj. Baćić and A. Filipin, A note on the number of D(4)-quintuples, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 18 (2014), 7-13.
    MathSciNet

  5. A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62.
    MathSciNet     CrossRef

  6. A. Dujella and A. Pethő, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306.
    MathSciNet     CrossRef

  7. A. Dujella and A.M.S. Ramasamy, Fibonacci numbers and sets with the property D(4), Bull. Belg. Math. Soc. Simon Stevin 12(3) (2005), 401-412.
    MathSciNet

  8. A. Filipin, There does not exist a D(4)-sextuple, J. Number Theory 128 (2008), 1555-1565.
    MathSciNet     CrossRef

  9. A. Filipin, On the size of sets in which xy + 4 is always a square, Rocky Mountain J. Math. 39(4) (2009), 1195-1224.
    MathSciNet     CrossRef

  10. A. Filipin, The extendibility of D(4)-pair {F2k, 5F2k}, Fibonacci Quart. 53 (2015), 124-129.
    MathSciNet

  11. A. Filipin, B. He and A. Togbé, On the D(4)-triple {F2k, F2k+6, 4F2k+4}, Fibonacci Quart. 48 (2010), 219-227.
    MathSciNet

  12. A. Filipin, B. He and A. Togbé, On a family of two-parametric D(4)-triples, Glas. Mat. Ser. III 47 (2012), 31–51.
    MathSciNet     CrossRef

  13. Y. Fujita, Unique representation d = 4k(k2-1) in D(4)-quadruples {k-2, k+2, 4k, d}, Math. Commun. 11 (2006), 69-81.
    MathSciNet

  14. K. S. Kedlaya, Solving constrained Pell equations, Math. Comp. 67 (1998), 833-842.
    MathSciNet     CrossRef

  15. S. P. Mohanty and A. M. S. Ramasamy, The characteristic number of two simultaneous Pell’s equations and its application, Bull. Belg. Math. Soc. Simon Stevin 59 (1985), 203-214.
    MathSciNet


Rad HAZU Home Page