Rad HAZU, Matematičke znanosti, Vol. 20 (2016), 27-35.
THE EXTENDIBILITY OF D(4)-PAIRS {F2k, F2k+6}
AND {P2k, P2k+4}
Ljubica Baćić Đuračković and Alan Filipin
Primary School Nikola Andrić, 32000 Vukovar, Croatia
e-mail: ljubica.bacic@skole.hr
Faculty of Civil Engineering, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: filipin@master.grad.hr
Abstract. Let k ≥ 1 be an integer and let Fk
be the k-th Fibonacci
number and Pk k-th Pell number. In this paper we prove that the pairs
{F2k, F2k+6} and
{P2k, P2k+4} cannot be extended to a D(4)-quintuple.
2010 Mathematics Subject Classification.
11D09, 11J68.
Key words and phrases. Diophantine tuples, simultaneous Diophantine equations.
Full text (PDF) (free access)
References:
- Lj. Baćić and A. Filipin, On the family of D(4)-triples
{k - 2, k + 2, 4k3 - 4k},
Bull. Belg. Math. Soc. Simon Stevin 20(4) (2013), 777-787.
MathSciNet
- Lj. Baćić and A. Filipin, On the extensibility of D(4)-pair
{k-2, k+2}, J. Comb. Number Theory 5(3) (2013), 181-197.
MathSciNet
- Lj. Baćić and A. Filipin, The extendibility of D(4)-pairs, Math. Commun. 18 (2013),
447-456.
MathSciNet
- Lj. Baćić and A. Filipin, A note on the number of D(4)-quintuples, Rad Hrvat.
Akad. Znan. Umjet. Mat. Znan. 18 (2014), 7-13.
MathSciNet
- A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew.
Math. 442 (1993), 19-62.
MathSciNet
CrossRef
- A. Dujella and A. Pethő, A generalization of a theorem of Baker and Davenport,
Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306.
MathSciNet
CrossRef
- A. Dujella and A.M.S. Ramasamy, Fibonacci numbers and sets with the property D(4),
Bull. Belg. Math. Soc. Simon Stevin 12(3) (2005), 401-412.
MathSciNet
- A. Filipin, There does not exist a D(4)-sextuple, J. Number Theory 128 (2008), 1555-1565.
MathSciNet
CrossRef
- A. Filipin, On the size of sets in which xy + 4 is always a square, Rocky Mountain
J. Math. 39(4) (2009), 1195-1224.
MathSciNet
CrossRef
- A. Filipin, The extendibility of D(4)-pair
{F2k, 5F2k}, Fibonacci Quart. 53 (2015),
124-129.
MathSciNet
- A. Filipin, B. He and A. Togbé, On the D(4)-triple
{F2k, F2k+6, 4F2k+4}, Fibonacci
Quart. 48 (2010), 219-227.
MathSciNet
- A. Filipin, B. He and A. Togbé, On a family of two-parametric D(4)-triples,
Glas. Mat. Ser. III 47 (2012), 31–51.
MathSciNet
CrossRef
- Y. Fujita, Unique representation d = 4k(k2-1) in D(4)-quadruples
{k-2, k+2, 4k, d},
Math. Commun. 11 (2006), 69-81.
MathSciNet
- K. S. Kedlaya, Solving constrained Pell equations, Math. Comp. 67 (1998), 833-842.
MathSciNet
CrossRef
- S. P. Mohanty and A. M. S. Ramasamy, The characteristic number of two simultaneous
Pell’s equations and its application, Bull. Belg. Math. Soc. Simon Stevin 59 (1985),
203-214.
MathSciNet
Rad HAZU Home Page