Rad HAZU, Matematičke znanosti, Vol. 20 (2016), 9-18.
P-ADIC ROOT SEPARATION FOR QUADRATIC AND CUBIC POLYNOMIALS
Tomislav Pejković
Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia
e-mail: pejkovic@math.hr
Abstract. We study p-adic root separation for quadratic and cubic
polynomials with integer coefficients. The quadratic and reducible cubic
polynomials are completely understood, while in the irreducible cubic case
and p ≠ 2, we give a family of polynomials with the bound which is the
best currently known.
2010 Mathematics Subject Classification.
11C08, 11B37, 11J61.
Key words and phrases. Integer polynomials, root separation, p-adic numbers.
Full text (PDF) (free access)
References:
- E. Bombieri and W. Gubler, Heights in Diophantine geometry, New Mathematical
Monographs, 4. Cambridge University Press, Cambridge, 2006.
MathSciNet
CrossRef
- Y. Bugeaud, Approximation by algebraic numbers, Cambridge Tracts in Mathematics,
Cambridge University Press, Cambridge, 2004.
MathSciNet
CrossRef
- Y. Bugeaud and A. Dujella, Root separation for irreducible integer polynomials, Bull.
Lond. Math. Soc. 43 (2011), 1239-1244.
MathSciNet
CrossRef
- Y. Bugeaud and A. Dujella, Root separation for reducible integer polynomials, Acta
Arith. 162 (2014), 393-403.
MathSciNet
CrossRef
- Y. Bugeaud and M. Mignotte, Polynomial root separation, Intern. J. Number Theory
6 (2010), 587-602.
MathSciNet
CrossRef
- A. Dujella and T. Pejković, Root separation for reducible monic quartics, Rend. Semin.
Mat. Univ. Padova 126 (2011), 63-72.
MathSciNet
CrossRef
- J.-H. Evertse, Distances between the conjugates of an algebraic number, Publ. Math.
Debrecen 65 (2004), 323-340.
MathSciNet
- F. Q. Gouvêa, p-adic numbers. An introduction, Second edition, Universitext, Springer-
Verlag, Berlin, 1997.
MathSciNet
CrossRef
- N. Koblitz, p-adic numbers, p-adic analysis, and zeta-functions, Second edition,
Graduate Texts in Mathematics, 58. Springer-Verlag, New York, 1984.
MathSciNet
CrossRef
- S. Lang, Algebra, Revised third edition, Graduate Texts in Mathematics, 211.
Springer-Verlag, New York, 2002.
MathSciNet
CrossRef
- K. Mahler, An inequality for the discriminant of a polynomial, Michigan Math. J. 11
(1964), 257-262.
MathSciNet
- M. Mignotte, Mathematics for computer algebra, Springer-Verlag, New York, 1992.
MathSciNet
CrossRef
- J. F. Morrison, Approximation of p-adic numbers by algebraic numbers of bounded
degree, J. Number Theory 10 (1978), 334-350.
MathSciNet
CrossRef
- T. Pejković, Polynomial Root Separation and Applications, PhD Thesis, Université de
Strasbourg, Strasbourg, 2012.
- A. Schönhage, Polynomial root separation examples, J. Symbolic Comput. 41 (2006),
1080-1090.
MathSciNet
CrossRef
Rad HAZU Home Page