Rad HAZU, Matematičke znanosti, Vol. 19 (2015), 91-116.

GENERALIZATION OF MAJORIZATION THEOREM VIA ABEL-GONTSCHAROFF POLYNOMIAL

Muhammad Adil Khan, Naveed Latif and Josip Pečarić

Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan
e-mail: adilswati@gmail.com

Department of Mathematics, Govt. College University, Faisalabad 38000, Pakistan
e-mail: naveed707@gmail.com

Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
e-mail: pecaric@element.hr


Abstract.   In this paper we use Abel-Gontscharoff formula and Green function to give some identities for the difference of majorization inequality and present the generalization of majorization theorem for the class of n-convex. We use inequalities for the Čebyšev functional to obtain bounds for the identities related to generalizations of majorization inequalities. We present mean value theorems and n-exponential convexity for the functional obtained from the generalized majorization inequalities. At the end we discuss the results for particular families of functions and give means.

2010 Mathematics Subject Classification.   26D15, 26D20.

Key words and phrases.   Majorization inequality, Abel-Gontscharoff formula, Čebyšev functional, Ostrowski-type inequality, n-exponential convexity.


Full text (PDF) (free access)


References:

  1. M. Adil Khan, S. Khalid and J. Pečarić, Refinements of some majorization type inequalities, J. Math. Inequal. 7 (2013), 73-92.
    MathSciNet     CrossRef

  2. M. Adil Khan, N. Latif and J. Pečarić, Generalization of majorization theorem by Hermite's polynomial, J. Adv. Math. Stud. 8 (2015), 206-223.

  3. M. Adil Khan, N. Latif and J. Pečarić, Generalization of majorization theorem, J. Math. Inequal. 9 (2015), 847-872.
    MathSciNet     CrossRef

  4. M. Adil Khan, N. Latif, I. Perić and J. Pečarić, On Sapogov's extension of Čebyšev's inequality, Thai J. Math. 10 (2012), 617-633.
    MathSciNet

  5. M. Adil Khan, N. Latif, I. Perić and J. Pečarić, On majorization for matrices, Math. Balkanica 27 (2013), 3-19.
    MathSciNet

  6. M. Adil Khan, M. Niezgoda and J. Pečarić, On a refinement of the majorization type inequality, Demonstratio Math. 44 (2011), 49-57.
    2797979  

  7. R. P. Agarwal and P. J. Y. Wong, Error Inequalities in Polynomial Interpolation and their Applications, Kluwer Academic Publishers, Dordrecht, 1993.
    MathSciNet     CrossRef

  8. N. S. Barnett, P. Cerone, S. S. Dragomir, Majorisation inequalities for Stieltjes integrals, Appl. Math. Lett. 22 (2009), 416-421.
    MathSciNet     CrossRef

  9. S. N. Bernstein, Sur les fonctions absolument monotones, Acta Math. 52 (1929), 1-66.
    MathSciNet     CrossRef

  10. S. I. Butt and J. Pečarić, Weighted Popoviciu type inequalities via generalized Montgomery identities, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 19 (2015), 69-89.

  11. P. Cerone, S. S. Dragomir, Some new Ostrowski-type bounds for the Čebyšev functional and applications, J. Math. Inequal. 8 (2014), 159-170.
    MathSciNet     CrossRef

  12. P. J. Davis, Interpolation and Approximation, Blaisdell, Boston, 1961.

  13. S. S. Dragomir, Some majorisation type discrete inequalities for convex functions, Math. Inequal. Appl. 7 (2004), 207-216.
    MathSciNet     CrossRef

  14. L. Fuchs, A new proof of an inequality of Hardy-Littlewood-Polya, Mat. Tidsskr. B. 1947 (1947), 53-54.
    MathSciNet

  15. V. L. Gontscharoff, Theory of Interpolation and Approximation of Functions, Gostekhizdat, Moscow, 1954.

  16. J. Jakšetić and J. Pečarić, Exponential convexity method, J. Convex Anal. 20 (2013), 181-197.
    MathSciNet

  17. J. Jakšetić, J. Pečarić and A. Perušić, Steffensen inequality, higher order convexity and exponential convexity, Rend. Circ. Mat. Palermo 63 (2014), 109-127.
    MathSciNet     CrossRef

  18. N. Latif, J. Pečarić and I. Perić, On majorization, Favard and Berwald's inequalities, Ann. Funct. Anal. 2 (2011), 31-50.
    MathSciNet     CrossRef

  19. L. Maligranda, J. Pečarić and L. E. Persson, Weighted Favard's and Berwald's inequalities, J. Math. Anal. Appl. 190 (1995), 248-262.
    MathSciNet     CrossRef

  20. A. W. Marshall, I. Olkin and B. C. Arnold, Inequalities: Theory of Majorization and Its Applications (Second Edition), Springer Series in Statistics, New York 2011.
    MathSciNet     CrossRef

  21. C. P. Niculescu and L. E. Persson, Convex functions and their applications. A contemporary approach, CMS Books in Mathematics, Springer-Verlag, New York, 2006.
    MathSciNet     CrossRef

  22. J. Pečarić, On some inequalities for functions with nondecreasing increments, J. Math. Anal. Appl. 98 (1984), 188-197.
    MathSciNet     CrossRef

  23. J. Pečarić, F. Proschan and Y. L. Tong, Convex functions, Partial Orderings and Statistical Applications, Academic Press, New York, 1992.
    MathSciNet

  24. J. Pečarić and J. Perić, Improvements of the Giaccardi and the Petrović inequality and related results, An. Univ. Craiova Ser. Mat. Inform. 39 (2012), 65-75.
    MathSciNet

  25. D. V. Widder, The Laplace Transform, Princeton Univ. Press, New Jersey, 1941.
    MathSciNet

  26. J. M. Whittaker, Interpolation Function Theory, Cambridge, 1935.


Rad HAZU Home Page