Rad HAZU, Matematičke znanosti, Vol. 19 (2015), 69-89.

WEIGHTED POPOVICIU TYPE INEQUALITIES VIA GENERALIZED MONTGOMERY IDENTITIES

Saad Ihsan Butt and Josip Pečarić

Department of Mathematics, COMSATS, Institute of Information Technology, Lahore, Pakistan
e-mail: saadihsanbutt@gmail.com

Department of Mathematics, Faculty of Textile Technology, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: pecaric@mahazu.hazu.hr


Abstract.   We obtained useful identities via generalized Montgomery identities, by which the inequality of Popoviciu for convex functions is generalized for higher order convex functions. We investigate the bounds for the identities related to the generalization of the Popoviciu inequality using inequalities for the Čebyšev functional. Some results relating to the Grüss and Ostrowski type inequalities are constructed. Further, we also construct new families of exponentially convex functions and Cauchy-type means by looking at linear functionals associated with the obtained inequalities.

2010 Mathematics Subject Classification.   26D07, 26D15, 26D20, 26D99.

Key words and phrases.   Convex function, divided difference, generalized Montgomery identity, Čebyšev functional, Grüss inequality, Ostrowski inequality, exponential convexity.


Full text (PDF) (free access)


References:

  1. M. Adil Khan, N. Latif and J. Pečarić, Generalization of majorization theorem, J. Math. Inequal. 9 (2015), 847-872.
    MathSciNet     CrossRef

  2. M. Adil Khan, N. Latif and J. Pečarić, Generalization of majorization theorem via Abel-Gontscharoff polynomial, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 19 (2015), 91-116.

  3. A. Aglić Aljinović and J. Pečarić, On some Ostrowski type inequalities via Montgomery identity and Taylor's formula II, Tamkang J. Math. 36 (2005), 199-218.
    MathSciNet

  4. A. Aglić Aljinović, J. Pečarić and A. Vukelić, On some Ostrowski type inequalities via Montgomery identity and Taylor's formula II, Tamkang J. Math. 36 (2005), 279-301.
    MathSciNet

  5. S. N. Bernstein, Sur les fonctions absolument monotones, Acta Math. 52 (1929), 1-66.
    MathSciNet     CrossRef

  6. P. Cerone and S. S. Dragomir, Some new Ostrowski-type bounds for the Čebyšev functional and applications, J. Math. Inequal. 8(1) (2014), 159-170.
    MathSciNet     CrossRef

  7. L. Horváth, K. A. Khan and J. Pečarić, Combinatorial Improvements of Jensens Inequality / Classical and New Refinements of Jensens Inequality with Applications, Monographs in inequalities 8, Element, Zagreb, 2014.

  8. J. Jakšetić and J. Pečarić, Exponential Convexity Method, J. Convex Anal. 20(1) (2013), 181-197.
    MathSciNet

  9. J. Jakšetić, J. Pečarić and A. Perušić, Steffensen inequality, higher order convexity and exponential convexity, Rend. Circ. Mat. Palermo. 63 (2014), 109-127.
    MathSciNet     CrossRef

  10. K. A. Khan, J. Pečarić and I. Perić, Differences of weighted mixed symmetric means and related results, J. Inequal. Appl. 2010, Art. ID 289730, 16 pp.
    MathSciNet     CrossRef

  11. K. A. Khan, J. Pečarić and I. Perić, Generalization of Popoviciu type inequalities for symmetric means generated by convex functions, J. Math. Comput. Sci. 4 (2014), 1091-1113.

  12. D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Inequalities for Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, 1994.

  13. C. P. Niculescu, The integral version of Popoviciu's inequality, J. Math. Inequal. 3 (2009), 323-328.
    MathSciNet     CrossRef

  14. C. P. Niculescu and F. Popovici, A refinement of Popoviciu's inequality, Bull. Soc. Sci. Math. Roum. 49(97) (2006), 285-290.
    MathSciNet

  15. J. Pečarić and J. Perić, Improvement of the Giaccardi and the Petrović inequality and related Stolarsky type means, An. Univ. Craiova Ser. Mat. Inform. 39 (2012), 65-75.

  16. J. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, New York, 1992.
    MathSciNet

  17. T. Popoviciu, Sur certaines inégalités qui caractérisent les fonctions convexes, An. Sti. Univ. ``Al. I. Cuza'' Iasi Sect. I a Mat. (N.S.) 11 (1965), 155-164.
    MathSciNet

  18. P. M. Vasić and Lj. R. Stanković, Some inequalities for convex functions, Math. Balkanica 6(44) (1976), 281-288.
    MathSciNet

  19. D. V. Widder, Completely convex function and Lidstone series, Trans. Amer. Math. Soc. 51 (1942), 387-398.
    MathSciNet


Rad HAZU Home Page