Rad HAZU, Matematičke znanosti, Vol. 19 (2015), 55-68.


Marcela Hanzer

Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: hanmar@math.hr

Abstract.   We show that if an irreducible admissible representation of SO4n(F) has a generalized Shalika model, then its small theta lift to Sp4n(F) has the symplectic linear model, thus answering a question posed by D. Jiang. Here F is a non-archimedean field of characteristic zero.

2010 Mathematics Subject Classification.   22E50, 11F70.

Key words and phrases.   Generalized Shalika model, symplectic linear model, theta correspondence.

Full text (PDF) (free access)


  1. N. Bourbaki, Éléments de mathématique. Fascicule XXIX. Livre VI: Intégration. Chapitre 7: Mesure de Haar. Chapitre 8: Convolution et représentations, Hermann, Paris, 1963.

  2. W. Casselman, Introduction to the theory of admissible representations of p-adic reductive groups, preprint, 1995.

  3. A. David, M. Hanzer and J. Ludwig, The conjectural relation between generalized Shalika models on SO4n(F) and the symplectic linear model on Sp4n(F). A Toy example, accepted for publication in Women in Numbers Europe: Research Directions in Number Theory (eds. A.Bucur, M.-J. Bertin, B. Feigon, L. Schneps).

  4. W. T. Gan, B. H. Gross and D. Prasad, Restrictions of representations of classical groups: examples, Astérisque 346 (2012), 111-170.

  5. W. T. Gan, B. H. Gross, D. Prasad and J.-L. Waldspurger, Sur les conjectures de Gross et Prasad. I, Astérisque No. 346, Société Mathématique de France, Paris, 2012.

  6. W. T. Gan and T. Shuichiro, The proof of Howe duality conjecture,

  7. D. Ginzburg, S. Rallis and D. Soudry, On explicit lifts of cusp forms from GLm to classical groups, Ann. of Math. (2) 150 (1999), 807-866.
    MathSciNet     CrossRef

  8. D. Jiang, C. Nien and Y. Qin, Symplectic supercuspidal representations and related problems, Sci. China Math. 53 (2010), 533-546.
    MathSciNet     CrossRef

  9. D. Jiang, C. Nien and Y. Qin, Generalized Shalika models of p-adic SO4n and functoriality, Israel J. Math. 195 (2013), 135-169.
    MathSciNet     CrossRef

  10. D. Jiang and Y. Qin, Residues of Eisenstein series and generalized Shalika models for SO4n, J. Ramanujan Math. Soc. 22 (2007), 101-133.

  11. S. Kudla, Notes on the local theta correspondence (lectures at the European School in Group Theory), 1996.

  12. C. Mœglin, M.-F. Vignéras and J.-L. Waldspurger, Correspondances de Howe sur un corps p-adique, Lecture Notes in Mathematics 1291, Springer-Verlag, Berlin, 1987.

  13. Y. Sakellaridis, On the unramified spectrum of spherical varieties over p-adic fields, Compos. Math. 144 (2008), 978-1016.
    MathSciNet     CrossRef

  14. B. Sun and C.-B. Zhu, Conservation relations for local theta correspondence, http://arxiv.org/pdf/1204.2969v2.pdf, 2012.

Rad HAZU Home Page