Rad HAZU, Matematičke znanosti, Vol. 19 (2015), 27-53.
REMARK ON REPRESENTATION THEORY OF GENERAL LINEAR GROUPS OVER A NON-ARCHIMEDEAN LOCAL
DIVISION ALGEBRA
Marko Tadić
Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia
e-mail: tadic@math.hr
Abstract. In this paper we give a simple (local) proof of two principal
results about irreducible tempered representations of general linear
groups over a non-archimedean local division algebra. We give a proof of
the parameterization of the irreducible square integrable representations of
these groups by segments of cuspidal representations, and a proof of the
irreducibility of the tempered parabolic induction. Our proofs are based
on Jacquet modules (and the Geometric Lemma, incorporated in the structure
of a Hopf algebra). We use only some very basic general facts of the
representation theory of reductive p-adic groups (the theory that we use
was completed more then three decades ago, mainly in 1970-es). Of the
specific results for general linear groups over A, basically we use only a very
old result of G. I. Ol’šanskii, which says that there exist complementary
series starting from Ind(ρ ⊗ ρ) whenever ρ is a unitary irreducible cuspidal
representation. In appendix of [11], there is also a simple local proof of
these results, based on a slightly different approach.
2010 Mathematics Subject Classification.
22E50.
Key words and phrases. Non-archimedean local fields, division algebras, general
linear groups, Speh representations, parabolically induced representations, reducibility,
unitarizability.
Full text (PDF) (free access)
References:
- A. I. Badulescu,
Jacquet-Langlands et unitarisabilité,
J. Inst. Math. Jussieu
6 (2007), 349-379.
MathSciNet
CrossRef
- A. I. Badulescu,
Un résultat d'irréductibilité en caractéristique non nulle,
Tohoku Math. J. (2) 56 (2004), 583-592.
MathSciNet
- A. I. Badulescu and D. A. Renard,
Sur une conjecture de Tadić,
Glas. Mat. Ser III 39 (2004), 49-54.
MathSciNet
CrossRef
- A. I. Badulescu,
On p-adic Speh representations,
Bull. Soc. Math. France 142 (2014),
255-267.
MathSciNet
-
A. I. Badulescu, G. Henniart, B. Lemaire and V. Sécherre,
Sur le dual unitaire de GLr(D),
Amer. J. Math. 132 (2010), 1365-1396.
MathSciNet
CrossRef
-
J. Bernstein,
P-invariant distributions on GL(N) and the
classification of unitary representations of
GL(N)
(non-archimedean case),
in: Lie Group
Representations II, Lecture Notes
in Math. 1041, Springer-Verlag, Berlin, 1984, pp. 50-102.
MathSciNet
CrossRef
-
W. Casselman,
Introduction to the theory of admissible representations of p-adic reductive
groups, preprint
(http://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf).
-
P. Deligne, D. Kazhdan and M.-F. Vignéras,
Repréacute;sentations des algébres centrales sim
ples p-adiques,
in: Représentations des Groupes Réductifs sur un Corps Local
by
J.-N. Bernstein, P. Deligne, D. Kazhdan and M.-F. Vignéras, Hermann, Paris, 1984.
-
V. Heiermann,
Décomposition spectrale et représentations spéciales
d'un groupe réductif p-adique,
J. Inst. Math. Jussieu 3 (2004), 327-395.
MathSciNet
CrossRef
- C. Jantzen,
On square-integrable representations of classical p-adic groups,
Canad. J. Math. 52 (2000), 539-581.
MathSciNet
CrossRef
-
E. Lapid and A. Mínguez,
On parabolic induction on inner forms of the general linear group over a non-archimedean local field, preprint
(http://arxiv-web3.library.cornell.edu/pdf/1411.6310v1.pdf).
-
A. Mínguez and V. Sécherre,
Représentations banales de GL(m,D),
Compos. Math. 149 (2013), 679-704.
MathSciNet
CrossRef
-
A. Mínguez and V. Sécherre,
Représentations lisses modulo l de GL(m,D),
Duke Math. J. 163 (2014), 795-887.
MathSciNet
CrossRef
- G. I. Ol'šanskii,
Intertwining operators and complementary series in the class of representations induced from parabolic subgroups
of the general linear group over a locally compact division algebra (in Russian),
Mat. Sb. (N.S.) 93(135) (1974), 218-253
(English translation: Math. USSR Sbornik 22 (1974), 217-254).
MathSciNet
-
F. Rodier,
Représentations de GL(n,k) où k est un
corps p-adique,
Séminaire Bourbaki no 587 (1982), Astérisque
92-93 (1982), 201-218.
MathSciNet
- V. Sécherre,
Proof of the Tadić conjecture (U0) on the unitary dual
of GLm(D),
J. Reine Angew. Math. 626 (2009), 187-203.
MathSciNet
CrossRef
-
F. Shahidi,
Local coefficients and normalization of intertwining operators for GL(n),
Compositio Math. 48 (1983), 271-295.
MathSciNet
-
F. Shahidi,
Poles of Intertwining Operators via Endoscopy; the Connection with Prehomogeneous Vector Spaces. With an Appendix, `Basic Endoscopic Data', by Diana Shelstad,
Compositio Math. 120 (2000), 291-325.
MathSciNet
CrossRef
-
A. Silberger,
Special representations of reductive p-adic groups are not integrable,
Ann. of
Math. 111 (1980), 571-587.
MathSciNet
CrossRef
-
M. Tadić,
Classification of unitary representations in irreducible
representations of general linear group (non-archimedean case),
Ann. Sci. École Norm. Sup. 19 (1986), 335-382.
MathSciNet
-
M. Tadić,
Geometry of dual spaces of reductive groups (non-archimedean
case),
J. Analyse Math. 51 (1988), 139-181.
MathSciNet
CrossRef
-
M. Tadić,
Induced representations of GL(n,A) for p-adic division algebras A,
J. Reine Angew. Math. 405 (1990),
48-77.
MathSciNet
CrossRef
-
M. Tadić,
An external approach to unitary representations,
Bull. Amer. Math. Soc. (N.S.) 28 (1993), 215-252.
MathSciNet
CrossRef
-
A. V. Zelevinsky,
Induced representations of reductive p-adic groups II. On
irreducible representations of GL(n),
Ann. Sci. École Norm. Sup. 13 (1980), 165-210.
MathSciNet
Rad HAZU Home Page