Rad HAZU, Matematičke znanosti, Vol. 19 (2015), 13-26.

ORTHOGONAL PROJECTION OF AN INFINITE ROUND CONE IN REAL HILBERT SPACE

Mate Kosor

Maritime Department, University of Zadar, 23 000 Zadar, Croatia
e-mail: makosor@unizd.hr


Abstract.   We fully characterize orthogonal projections of infinite right circular (round) cones in real Hilbert spaces. Another interpretation is that, given two vectors in a real Hilbert space, we establish the optimal estimate on the angle between the orthogonal projections of the two vectors. The estimate depends on the angle between the two vectors and the position of only one of the two vectors. Our results also make a contributions to Cauchy-Bunyakovsky-Schwarz type inequalities.

2010 Mathematics Subject Classification.   15A63, 46C05, 26D15, 51M05, 51M04.

Key words and phrases.   Round cone, aperture, projection, angle, reverse Cauchy inequality.


Full text (PDF) (free access)


References:

  1. D. Andrica and C. Badea, Grüss' inequality for positive linear functionals, Period. Math. Hungar. 19 (1988), 155-167.
    MathSciNet     CrossRef

  2. H. Bodnarescu, New theorems in connection with the theory of projections of plane angles, Gaz. Mat. Fiz. Ser. A. 8 (1956), 345-355 (in Romanian).
    MathSciNet

  3. J. B. Conway, A course in Functional Analysis, 2. ed., Springer-Verlag, New York, 1990.
    MathSciNet

  4. J. B. Diaz and F. T. Metcalf, A complementary triangle inequality in Hilbert and Banach spaces, Proc. Amer. Math. Soc. 17 (1966), 88-97.
    MathSciNet

  5. S. S. Dragomir, A Survey on Cauchy-Bunyakovsky-Schwarz type discrete inequalities, JIPAM. J. Inequal. Pure Appl. Math. 4 (2003), no. 3, Article 63, 142 pp.
    MathSciNet

  6. M. A. Gol'dman, A problem on three orthogonal projections of an angle, Topologicheskie prostranstva i ikh otobrazheniya 2 (1989), 49-61 (in Russian).

  7. S. Pennell and J. Deignan, Computing the projected area of a cone, SIAM Review 31 (1989), 299-302.
    MathSciNet     CrossRef

  8. G. Pólya and G. Szegö, Aufgaben und Lehrsütze ans der Analysis, Band I: Reihen, Integralrechnung, Funktionentheorie, Springer Verlag, Berlin, 1970. (Original version: Julius Springer, Berlin, 1925.)
    MathSciNet

  9. F. A. Rickey, On the Projection of an Angle Upon a Plane, Natl. Math. Mag. 11(5) (1937), 209-212.
    MathSciNet

  10. O. A. Vigrand, Projections of plane angles, Geometrografija: mežvuzovskij naučno-metodičeskij sbornik 2 (1977), 87-94 (in Russian).
    MathSciNet

  11. O. A. Vigrand, On the question of projections of plane angles, Geometrografija: mežvuzovskij naučno-metodičeskij sbornik 2 (1977), 95-98 (in Russian).
    MathSciNet

  12. O. A. Vigrand, Angles with two equal orthogonal projections, Geometrografija: mežvuzovskij naučno-metodičeskij sbornik 2 (1977), 99-108. (in Russian)
    MathSciNet

  13. G. S. Watson, Serial correlation in regression analysis I, Biometrika 42 (1955), 327-341.
    MathSciNet

  14. J. Zhou, J.-S. Chen and H.-F. Hung, Circular cone convexity and some inequalities associated with circular cones, J. Inequal. Appl. 571 (2013), 1-17.
    MathSciNet     CrossRef


Rad HAZU Home Page