Rad HAZU, Matematičke znanosti, Vol. 18 (2014), 91-106.

ON A NEW CLASS OF HARDY-TYPE INEQUALITIES WITH FRACTIONAL INTEGRALS AND FRACTIONAL DERIVATIVES

Sajid Iqbal, Kristina Krulić and Josip Pečarić

Department of Mathematics, University of Sargodha, Sub-Campus Bhakkar, Bhakkar, Pakistan
e-mail: sajid_uos2000@yahoo.com

Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a 10000 Zagreb, Croatia
e-mail: kkrulic@ttf.hr

Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a 10000 Zagreb, Croatia
e-mail: pecaric@element.hr


Abstract.   This paper is devoted to a new class of general weighted Hardy-type inequalities for arbitrary convex functions with some applications to different type of fractional integrals and fractional derivatives.

2010 Mathematics Subject Classification.   26D10, 26D15, 26A33.

Key words and phrases.   Hardy-type inequalities, convex function, kernel, fractional derivative, fractional integrals.


Full text (PDF) (free access)


References:

  1. G. A. Anastassiou, Fractional Differentiation Inequalities, Springer Science-Businness Media, LLC, Dordrecht, 2009.
    MathSciNet     CrossRef

  2. M. Andrić, J. Pečarić and I. Perić, A multiple Opial type inequality for the Riemann-Liouville fractional derivatives, J. Math. Inequal. 7 (2013), 139-150.
    MathSciNet     CrossRef

  3. M. Andrić, J. Pečarić and I. Perić, Improvements of composition rule for Canavati fractional derivative and applications to Opial-type inequalities, Dynamic Systems Appl. 20 (2011), 383-394.
    MathSciNet

  4. M. Andrić, J. Pečarić and I. Perić, Composition identities for the Caputo fractional derivatives and applications to Opial-type inequalities, Math. Inequal. Appl. 16 (2013), 657-670.
    MathSciNet     CrossRef

  5. A. Čižmešija, K. Krulić and J. Pečarić, A new class of general refined Hardy type inequalities with kernels, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 17 (2013), 53-80.
    MathSciNet

  6. A. Čižmešija, K. Krulić and J. Pečarić, Some new refined Hardy-type inequalities with kernels, J. Math. Inequal. 4 (2010), 481-503.
    MathSciNet     CrossRef

  7. N. Elezović, K. Krulić and J. Pečarić, Bounds for Hardy type differences, Acta Math. Sin. (Engl. Ser.) 27 (2011), 671-684.
    MathSciNet     CrossRef

  8. G. D. Handley, J. J. Koliha and J. Pečarić, Hilbert-Pachpatte type integral inequalities for fractional derivatives, Fract. Calc. Appl. Anal. 4 (2001), 37-46.
    MathSciNet

  9. G. H. Hardy, Notes on some points in the integral calculus, Messenger. Math. 47 (1918), 145-150.

  10. S. Iqbal, K. Krulić and J. Pečarić, On an inequality of H. G. Hardy, J. Inequal. Appl. 2010, Art. ID 264347, 23 pp.
    MathSciNet     CrossRef

  11. S. Iqbal, K. Krulić and J. Pečarić, Improvement of an inequality of G. H. Hardy, Tamkang J. Math. 43 (2012), 399-416.
    MathSciNet     CrossRef

  12. S. Iqbal, K. Krulić Himmelreich and J. Pečarić, Improvement of an inequality of G. H. Hardy via superquadratic functions, Panamer. Math. J. 22 (2012), 77-97.
    MathSciNet

  13. S. Iqbal, K. Krulić Himmelreich and J. Pečarić, On an inequality of G. H. Hardy for convex functions with fractional integrals and fractonal derivatives, Tbil. Math. J. 6 (2013), 1-12.
    MathSciNet

  14. S. Kaijser, L. Nikolova, L.-E. Persson and A. Wedestig, Hardy type inequalities via convexity, Math. Inequal. Appl. 8 (2005), 403-417.
    MathSciNet     CrossRef

  15. A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Application of Fractinal Differential Equations, North-Holland Mathematics Studies 204, Elsevier, New York-London, 2006.
    MathSciNet

  16. K. Krulić, J. Pečarić and L.-E. Persson, Some new Hardy type inequalities with general kernels, Math. Inequal. Appl. 12 (2009), 473-485.
    MathSciNet     CrossRef

  17. J. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Inc. 1992.
    MathSciNet

  18. S. G. Samko, A. A. Kilbas and O. J. Marichev, Fractional Integral and Derivatives : Theory and Applications, Gordon and Breach Science Publishers, Switzerland, 1993.
    MathSciNet


Rad HAZU Home Page