Rad HAZU, Matematičke znanosti, Vol. 18 (2014), 91-106.
ON A NEW CLASS OF HARDY-TYPE INEQUALITIES WITH FRACTIONAL INTEGRALS AND FRACTIONAL DERIVATIVES
Sajid Iqbal, Kristina Krulić and Josip Pečarić
Department of Mathematics, University of Sargodha, Sub-Campus Bhakkar, Bhakkar, Pakistan
e-mail: sajid_uos2000@yahoo.com
Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a
10000 Zagreb, Croatia
e-mail: kkrulic@ttf.hr
Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a
10000 Zagreb, Croatia
e-mail: pecaric@element.hr
Abstract. This paper is devoted to a new class of general weighted
Hardy-type inequalities for arbitrary convex functions with some applications
to different type of fractional integrals and fractional derivatives.
2010 Mathematics Subject Classification.
26D10, 26D15, 26A33.
Key words and phrases. Hardy-type inequalities, convex function, kernel, fractional
derivative, fractional integrals.
Full text (PDF) (free access)
References:
- G. A. Anastassiou,
Fractional Differentiation Inequalities, Springer Science-Businness Media, LLC, Dordrecht, 2009.
MathSciNet
CrossRef
- M. Andrić, J. Pečarić and I. Perić,
A multiple Opial type inequality for the Riemann-Liouville fractional derivatives,
J. Math. Inequal. 7 (2013), 139-150.
MathSciNet
CrossRef
- M. Andrić, J. Pečarić and I. Perić,
Improvements of composition rule for Canavati fractional derivative and applications to Opial-type inequalities,
Dynamic Systems Appl. 20 (2011), 383-394.
MathSciNet
- M. Andrić, J. Pečarić and I. Perić,
Composition identities for the Caputo fractional derivatives and applications to Opial-type inequalities,
Math. Inequal. Appl. 16 (2013), 657-670.
MathSciNet
CrossRef
- A. Čižmešija, K. Krulić and J. Pečarić,
A new class of general refined Hardy type inequalities with kernels,
Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 17 (2013), 53-80.
MathSciNet
- A. Čižmešija, K. Krulić and J. Pečarić,
Some new refined Hardy-type inequalities with kernels,
J. Math. Inequal. 4 (2010), 481-503.
MathSciNet
CrossRef
- N. Elezović, K. Krulić and J. Pečarić,
Bounds for Hardy type differences,
Acta Math. Sin. (Engl. Ser.) 27 (2011), 671-684.
MathSciNet
CrossRef
- G. D. Handley, J. J. Koliha and J. Pečarić,
Hilbert-Pachpatte type integral inequalities for fractional derivatives,
Fract. Calc. Appl. Anal. 4 (2001), 37-46.
MathSciNet
- G. H. Hardy,
Notes on some points in the integral calculus,
Messenger. Math. 47 (1918), 145-150.
- S. Iqbal, K. Krulić and J. Pečarić,
On an inequality of H. G. Hardy,
J. Inequal. Appl. 2010, Art. ID 264347, 23 pp.
MathSciNet
CrossRef
- S. Iqbal, K. Krulić and J. Pečarić,
Improvement of an inequality of G. H. Hardy,
Tamkang J. Math. 43 (2012), 399-416.
MathSciNet
CrossRef
- S. Iqbal, K. Krulić Himmelreich and J. Pečarić,
Improvement of an inequality of G. H. Hardy via superquadratic functions,
Panamer. Math. J. 22 (2012), 77-97.
MathSciNet
- S. Iqbal, K. Krulić Himmelreich and J. Pečarić,
On an inequality of G. H. Hardy for convex functions with fractional integrals and fractonal derivatives,
Tbil. Math. J. 6 (2013), 1-12.
MathSciNet
- S. Kaijser, L. Nikolova, L.-E. Persson and A. Wedestig,
Hardy type inequalities via convexity,
Math. Inequal. Appl. 8 (2005), 403-417.
MathSciNet
CrossRef
- A. A. Kilbas, H. M. Srivastava and J. J. Trujillo,
Theory and Application of Fractinal Differential Equations,
North-Holland Mathematics Studies 204, Elsevier, New York-London, 2006.
MathSciNet
- K. Krulić, J. Pečarić and L.-E. Persson,
Some new Hardy type inequalities with general kernels,
Math. Inequal. Appl. 12 (2009), 473-485.
MathSciNet
CrossRef
- J. Pečarić, F. Proschan and Y. L. Tong,
Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Inc. 1992.
MathSciNet
- S. G. Samko, A. A. Kilbas and O. J. Marichev,
Fractional Integral and Derivatives : Theory and Applications, Gordon and Breach Science Publishers, Switzerland, 1993.
MathSciNet
Rad HAZU Home Page