Rad HAZU, Matematičke znanosti, Vol. 18 (2014), 55-72.
ON KAC PARAMETERS AND SPECTRAL DECOMPOSITION OF A MATRIX OF SPECIALIZED ROOTS OF
LIE ALGEBRA sln
Zlatko Drmač and Tomislav Šikić
Faculty of Sciences, Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: drmac@math.hr
Faculty of Electrical Engineering and Computing, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: tomislav.sikic@fer.hr
Abstract. This paper presents interesting spectral properties of a
particular integer skew-symmetric matrix, used to encode information on
Z-gradation of type s~ for classical affine Lie algebra
sln~. It is shown that
the hidden Kac parameters can be revealed using an explicitly computed
eigenvector in a Gram-Schmidt orthogonalization process.
2010 Mathematics Subject Classification.
17B67, 15A18, 15B57.
Key words and phrases. Z-gradation for classical (affine) Lie algebra, Kac parameters
of finite order automorphisms of simple Lie algebras, matrix of specialized roots, integer
skew-symmetric matrix, spectral decomposition.
Full text (PDF) (free access)
References:
- R. Bhatia,
Matrix Analysis, Springer,
Graduate Texts in Mathematics 169, 1997.
MathSciNet
CrossRef
- N. Bourbaki,
Groupes et algébres de Lie,
Chapitres 4,5,6, Hermann, 1968.
MathSciNet
- N. Bourbaki,
Groupes et algébres de Lie,
Chapitres 7,8, Hermann, 1975.
- J. Gallier and D. Xu,
Computing exponentials of skew-symmetric matrices and logarithms of orthogonal matrices,
International Journal of Robotics and Automation 17 (2002), 1-11.
- S. Helgason,
Differential Geometry, Lie Groups, and Symmetric spaces, Academic Press, 1978.
MathSciNet
- J. E. Humphreys,
Introduction to Lie algebras and Representation Theory, Springer-Verlag, 1972.
MathSciNet
- V. G. Kac,
Automorphisms of finite order of semi-simple Lie algebras,
Funct. Anal. Appl. 3 (1969), 252-254.
MathSciNet
- V. G. Kac, Infinite dimensional Lie algebras,
Cambridge University Press, 1990.
MathSciNet
CrossRef
- V. G. Kac, D. A. Kazhdan, J. Lepowsky and R. L. Wilson,
Realisations of the basic representation of the Euclidean Lie algebras,
Advance in Math. 42 (1981), 83-112.
MathSciNet
CrossRef
- V. G. Kac and D. H. Peterson,
112 constructions of the basic representation of the loop group of E8,
in: Symposium on anomalies, geometry, topology,
World Sci. Publishing, Singapore, 1985, 276-298.
MathSciNet
- F. ten Kroode and J. van de Leur,
Bosonic and fermionic realization of the affine algebra gln^,
Commun. Math. Phys. 137 (1991), 67-107.
MathSciNet
- J. Lepowsky,
Calculus of twisted vertex operators,
Proc. Nat. Acad. Sci. U.S.A. 82 (1985), 8295-8299.
MathSciNet
CrossRef
- J. Lepowsky and R. L. Wilson,
Construction of the affine Lie algebra A1(1),
Comm. Math. Phys. 62 (1978), 43-53.
MathSciNet
- T. Šikić,
Z-gradations of classical affine Lie algebras and Kac parameters,
Comm. Algebra 32 (2004), 2987-3016.
MathSciNet
CrossRef
Rad HAZU Home Page