Rad HAZU, Matematičke znanosti, Vol. 18 (2014), 55-72.

ON KAC PARAMETERS AND SPECTRAL DECOMPOSITION OF A MATRIX OF SPECIALIZED ROOTS OF LIE ALGEBRA sln

Zlatko Drmač and Tomislav Šikić

Faculty of Sciences, Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: drmac@math.hr

Faculty of Electrical Engineering and Computing, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: tomislav.sikic@fer.hr


Abstract.   This paper presents interesting spectral properties of a particular integer skew-symmetric matrix, used to encode information on Z-gradation of type s~ for classical affine Lie algebra sln~. It is shown that the hidden Kac parameters can be revealed using an explicitly computed eigenvector in a Gram-Schmidt orthogonalization process.

2010 Mathematics Subject Classification.   17B67, 15A18, 15B57.

Key words and phrases.   Z-gradation for classical (affine) Lie algebra, Kac parameters of finite order automorphisms of simple Lie algebras, matrix of specialized roots, integer skew-symmetric matrix, spectral decomposition.


Full text (PDF) (free access)


References:

  1. R. Bhatia, Matrix Analysis, Springer, Graduate Texts in Mathematics 169, 1997.
    MathSciNet     CrossRef

  2. N. Bourbaki, Groupes et algébres de Lie, Chapitres 4,5,6, Hermann, 1968.
    MathSciNet

  3. N. Bourbaki, Groupes et algébres de Lie, Chapitres 7,8, Hermann, 1975.

  4. J. Gallier and D. Xu, Computing exponentials of skew-symmetric matrices and logarithms of orthogonal matrices, International Journal of Robotics and Automation 17 (2002), 1-11.

  5. S. Helgason, Differential Geometry, Lie Groups, and Symmetric spaces, Academic Press, 1978.
    MathSciNet

  6. J. E. Humphreys, Introduction to Lie algebras and Representation Theory, Springer-Verlag, 1972.
    MathSciNet

  7. V. G. Kac, Automorphisms of finite order of semi-simple Lie algebras, Funct. Anal. Appl. 3 (1969), 252-254.
    MathSciNet

  8. V. G. Kac, Infinite dimensional Lie algebras, Cambridge University Press, 1990.
    MathSciNet     CrossRef

  9. V. G. Kac, D. A. Kazhdan, J. Lepowsky and R. L. Wilson, Realisations of the basic representation of the Euclidean Lie algebras, Advance in Math. 42 (1981), 83-112.
    MathSciNet     CrossRef

  10. V. G. Kac and D. H. Peterson, 112 constructions of the basic representation of the loop group of E8, in: Symposium on anomalies, geometry, topology, World Sci. Publishing, Singapore, 1985, 276-298.
    MathSciNet

  11. F. ten Kroode and J. van de Leur, Bosonic and fermionic realization of the affine algebra gln^, Commun. Math. Phys. 137 (1991), 67-107.
    MathSciNet

  12. J. Lepowsky, Calculus of twisted vertex operators, Proc. Nat. Acad. Sci. U.S.A. 82 (1985), 8295-8299.
    MathSciNet     CrossRef

  13. J. Lepowsky and R. L. Wilson, Construction of the affine Lie algebra A1(1), Comm. Math. Phys. 62 (1978), 43-53.
    MathSciNet

  14. T. Šikić, Z-gradations of classical affine Lie algebras and Kac parameters, Comm. Algebra 32 (2004), 2987-3016.
    MathSciNet     CrossRef


Rad HAZU Home Page