Rad HAZU, Matematičke znanosti, Vol. 18 (2014), 35-53.

POSITIVE EXPONENTIAL SUMS AND ODD POLYNOMIALS

Marina Ninčević and Siniša Slijepčević

Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia
e-mail: nincevic@math.hr
e-mail: slijepce@math.hr


Abstract.   Given an odd integer polynomial f(x) of a degree k ≥ 3, we construct a non-negative valued, normed trigonometric polynomial with non-vanishing coefficients only at values of f(x) not greater than n, and a small free coefficient a0 = O((log n)-1/k). This gives an alternative proof of the bound for the maximal possible cardinality of a set of integers A, so that A - A does not contain an integer value of f(x). We also discuss other interpretations and an ergodic characterization of that bound.

2010 Mathematics Subject Classification.   11P99, 37A45.

Key words and phrases.   Positive exponential sums, van der Corput sets, correlative sets, recurrence, difference sets, Fejér’s kernel, positive definiteness.


Full text (PDF) (free access)


References:

  1. V. Bergelson and\ E. Lesigne, Van der Corput sets in Zd, Colloq. Math. 110 (2008), 1-49.
    MathSciNet     CrossRef

  2. J. Bourgain, Ruzsa's problem on sets of recurrence, Israel J. Math. 59 (1987), 151-166.
    MathSciNet     CrossRef

  3. J. R. Chen, On Professor Hua's estimate of exponential sums, Sci. Sinica 20 (1977), 711-719.
    MathSciNet

  4. H. Furstenberg, Ergodic behaviour of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Anal. Math. 31 (1977), 204-256.
    MathSciNet     CrossRef

  5. T. Kamae, M. Mendès France, Van der Corput's difference theorem, Israel J. Math. 31 (1977), 335-342.
    MathSciNet     CrossRef

  6. J. Lucier, Intersective sets given by a polynomial, Acta Arith. 123 (2006), 57-95.
    MathSciNet     CrossRef

  7. M. Matolcsi and I. Z. Ruzsa, Difference sets and positive exponential sums I. General properties. Preprint.
    MathSciNet     CrossRef

  8. H. L. Montgomery, Ten lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, CMBS\ Regional Conference Series in\ Mathematics 84, AMS, 1994.
    MathSciNet

  9. H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory I. Classical Theory, Cambridge University Press, 2006.
    MathSciNet

  10. V. I. Nechaev, An estimate of the complete rational trigonometric sum, Math. Notes 17 (1975), 504-511.
    MathSciNet

  11. M. Ninčević, On van der Corput property of polynomials, PhD thesis (in Croatian), University of Zagreb, 2012.

  12. M. Ninčević, B. Rabar and S. Slijepčević, Ergodic characterization of van der Corput sets, Arch. Math. 98 (2012), 355-360.
    MathSciNet     CrossRef

  13. I. Z. Ruzsa, Uniform distribution, positive trigonometric polynomials and difference sets, in: Seminar on Number Theory 1981-82, Exp. No. 18, Univ. Bordeaux I, 1982.
    MathSciNet

  14. I. Z. Ruzsa, Connections between the uniform distribution of a sequence and its differences, in: Topics in Classical Number Theory, Vol. I, II (Budapest, 1981), Colloq. Math. Soc. János Bolyai 34, North-Holland, Amsterdam, 1984, pp. 1419-1443.
    MathSciNet

  15. I. Z. Ruzsa, personal communication, June 2009.

  16. S. Slijepčević, On van der Corput property of squares, Glas. Mat. Ser. III 45(65) (2010), 357-372.
    MathSciNet     CrossRef

  17. S. Slijepčević, On van der Corput property of shifted primes, Funct. Approx. Comment. Math. 48 (2013), 37-50.
    MathSciNet     CrossRef

  18. I. M. Vinogradov and A. A. Karatsuba, The method of trigonometric sums in number theory, (Russian), Trudy Mat. Inst. Steklov. 168 (1984), 4-30.
    MathSciNet


Rad HAZU Home Page