Rad HAZU, Matematičke znanosti, Vol. 18 (2014), 15-25.

THE PROBLEM OF DIOPHANTUS FOR INTEGERS OF Q(√-3)

Zrinka Franušić and Ivan Soldo

Department of Mathematics, University of Zagreb, Bijenička cesta 30, HR-10 000 Zagreb, Croatia
e-mail: fran@math.hr

Department of Mathematics, University of Osijek, Ljudevita Gaja 6, HR-31 000 Osijek, Croatia
e-mail: isoldo@mathos.hr


Abstract.   We solve the problem of Diophantus for integers of the quadratic field Q(√-3) by finding a D(z)-quadruple in Z[(1+√-3)/2] for each z that can be represented as a difference of two squares of integers in Q(√-3), up to finitely many possible exceptions.

2010 Mathematics Subject Classification.   11D09, 11R11.

Key words and phrases.   Diophantine quadruples, quadratic field.


Full text (PDF) (free access)


References:

  1. F. S. Abu Muriefah and A. Al-Rashed, Some Diophantine quadruples in the ring Z[√-2], Math. Commun. 9 (2004), 1-8.
    MathSciNet

  2. F. S. Abu Muriefah and A. Al-Rashed, On the extendibility of the Diophantine triples {1,5,c}, Int. J. Math. Math. Sci. 33 (2004), 1737-1746.
    MathSciNet     CrossRef

  3. S. Alaca and K. S. Williams, Introductory Algebraic Number Theory, Cambridge University Press, Cambridge, 2004.
    MathSciNet

  4. A. Baker and H. Davenport, The equations 3x2-2=y2 and 8x2-7=z2, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
    MathSciNet

  5. N. C. Bonciocat, M. Cipu and M. Mignotte, On D(-1)-quadruples, Publ. Mat. 56 (2012), 279-304.
    MathSciNet     CrossRef

  6. E. Brown, Sets in which xy+k is always a square, Math. Comp. 45 (1985), 613-620.
    MathSciNet     CrossRef

  7. A. Dujella, Generalization of a problem of Diophantus, Acta Arith. 65 (1993), 15-27.
    MathSciNet

  8. A. Dujella, Some polynomial formulas for Diophantine quadruples, Grazer Math. Ber. 328 (1996), 25-30.
    MathSciNet

  9. A. Dujella, The problem of Diophantus and Davenport for Gaussian integers, Glas. Mat. Ser. III 32 (1997), 1-10.
    MathSciNet

  10. A. Dujella, Complete solution of a family of simultanous Pellian equations, Acta Math. Inform. Univ. Ostraivensis 6 (1998), 59-67.
    MathSciNet

  11. A. Dujella, On the exceptional set in the problem of Diophantus and Davenport, Applications of Fibonacci Numbers 7 (1998), 69-76.
    MathSciNet

  12. A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183-214.
    MathSciNet     CrossRef

  13. A. Dujella, A. Filipin and C. Fuchs, Effective solution of the D(-1)-quadruple conjecture, Acta Arith. 128 (2007), 319-338.
    MathSciNet     CrossRef

  14. A. Dujella and Z. Franušić, On differences of two squares in some quadratic fields, Rocky Mountain J. Math. 37 (2007), 429-453.
    MathSciNet     CrossRef

  15. A. Dujella and C. Fuchs, Complete solution of a problem of Diophantus and Euler, J. London Math. Soc. 71 (2005), 33-52.
    MathSciNet     CrossRef

  16. A. Dujella and I. Soldo , Diophantine quadruples in Z[√-2], An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 18 (2010), 81-98.
    MathSciNet

  17. C. Elsholtz, A. Filipin and Y. Fujita, On Diophantine quintuples and D(-1)-quadruples, Monatsh. Math. 175 (2014), 227-239.
    MathSciNet     CrossRef

  18. A. Filipin, Nonextendibility of D(-1)-triples of the form {1,10,c}, Int. J. Math. Math. Sci. 14 (2005), 2217-2226.
    MathSciNet     CrossRef

  19. A. Filipin and Y. Fujita, The number of D(-1)-quadruples, Math. Commun. 15 (2010), 381-391.
    MathSciNet

  20. Z. Franušić, Diophantine quadruples in the ring Z[√2], Math. Commun. 9(2004), 141-148.
    MathSciNet

  21. Z. Franušić, Diophantine quadruples in Z[√(4k+3)], Ramanujan J. 17 (2008), 77-88.
    MathSciNet     CrossRef

  22. Z. Franušić, A Diophantine problem in Z[(1+ √d)/2], Stud. Sci. Math. Hung. 46 (2009), 103-112.
    MathSciNet     CrossRef

  23. Z. Franušić, Diophantine quadruples in the ring of integers of Q(√32), Miskolc Math. Notes 14 (2013), 893-903 .
    MathSciNet

  24. Y. Fujita, The extensibility of D(-1)-triples {1,b,c}, Pub. Math. Debrecen 70 (2007), 103-117.
    MathSciNet

  25. H. Gupta and K. Singh, On k-triad sequences, Internat. J. Math. Math. Sci. 8 (1985), 799-804.
    MathSciNet     CrossRef

  26. B. He and A. Togbé, On the D(-1)-triple {1, k2+1, k2+2k+2} and its unique D(-1)-extension, J. Number Theory 131 (2011), 120-137.
    MathSciNet     CrossRef

  27. S. P. Mohanty and A. M. S. Ramasamy, On P{r,k} sequences, Fibonacci Quart. 23 (1985), 36-44.
    MathSciNet

  28. I. Soldo, On the existence of Diophantine quadruples in Z[√-2], Miskolc Math. Notes 14 (2013), 261-273.
    MathSciNet     CrossRef

  29. I. Soldo, On the extensibility of D(-1)-triples {1,b,c} in the ring Z[√-t], t > 0, Studia Sci. Math. Hungar. 50 (2013), 296-330.
    MathSciNet     CrossRef

  30. I. Soldo, D(-1)-triples of the form {1,b,c} in the ring Z[√-t], t > 0, Bull. Malays. Math. Sci. Soc., to appear.


Rad HAZU Home Page