Rad HAZU, Matematičke znanosti, Vol. 18 (2014), 15-25.
THE PROBLEM OF DIOPHANTUS FOR INTEGERS OF Q(√-3)
Zrinka Franušić and Ivan Soldo
Department of Mathematics, University of Zagreb, Bijenička cesta 30, HR-10 000 Zagreb, Croatia
e-mail: fran@math.hr
Department of Mathematics, University of Osijek, Ljudevita Gaja 6, HR-31 000 Osijek, Croatia
e-mail: isoldo@mathos.hr
Abstract. We solve the problem of Diophantus for integers of the
quadratic field Q(√-3) by finding a D(z)-quadruple in
Z[(1+√-3)/2] for
each z that can be represented as a difference of two squares of integers in
Q(√-3), up to finitely many possible exceptions.
2010 Mathematics Subject Classification.
11D09, 11R11.
Key words and phrases. Diophantine quadruples, quadratic field.
Full text (PDF) (free access)
References:
- F. S. Abu Muriefah and A. Al-Rashed,
Some Diophantine quadruples in the ring Z[√-2],
Math. Commun. 9 (2004), 1-8.
MathSciNet
- F. S. Abu Muriefah and A. Al-Rashed,
On the extendibility of the Diophantine triples {1,5,c},
Int. J. Math. Math. Sci. 33 (2004), 1737-1746.
MathSciNet
CrossRef
- S. Alaca and K. S. Williams,
Introductory Algebraic Number Theory,
Cambridge University Press, Cambridge, 2004.
MathSciNet
- A. Baker and H. Davenport,
The equations 3x2-2=y2 and
8x2-7=z2,
Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
MathSciNet
- N. C. Bonciocat, M. Cipu and M. Mignotte,
On D(-1)-quadruples, Publ. Mat. 56 (2012), 279-304.
MathSciNet
CrossRef
- E. Brown,
Sets in which xy+k is always a square,
Math. Comp. 45 (1985), 613-620.
MathSciNet
CrossRef
- A. Dujella,
Generalization of a problem of Diophantus,
Acta Arith. 65 (1993), 15-27.
MathSciNet
- A. Dujella,
Some polynomial formulas for Diophantine quadruples,
Grazer Math. Ber. 328 (1996), 25-30.
MathSciNet
- A. Dujella,
The problem of Diophantus and Davenport for Gaussian integers,
Glas. Mat. Ser. III 32 (1997), 1-10.
MathSciNet
- A. Dujella,
Complete solution of a family of simultanous Pellian equations,
Acta Math. Inform. Univ. Ostraivensis 6 (1998), 59-67.
MathSciNet
- A. Dujella,
On the exceptional set in the problem of Diophantus and Davenport,
Applications of Fibonacci Numbers 7 (1998), 69-76.
MathSciNet
- A. Dujella,
There are only finitely many Diophantine quintuples,
J. Reine Angew. Math. 566 (2004), 183-214.
MathSciNet
CrossRef
- A. Dujella, A. Filipin and C. Fuchs,
Effective solution of the D(-1)-quadruple conjecture,
Acta Arith. 128 (2007), 319-338.
MathSciNet
CrossRef
- A. Dujella and Z. Franušić,
On differences of two squares in some quadratic fields,
Rocky Mountain J. Math. 37 (2007), 429-453.
MathSciNet
CrossRef
- A. Dujella and C. Fuchs,
Complete solution of a problem of Diophantus and Euler,
J. London Math. Soc. 71 (2005), 33-52.
MathSciNet
CrossRef
- A. Dujella and I. Soldo ,
Diophantine quadruples in Z[√-2],
An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 18 (2010), 81-98.
MathSciNet
- C. Elsholtz, A. Filipin and Y. Fujita,
On Diophantine quintuples and D(-1)-quadruples,
Monatsh. Math. 175 (2014), 227-239.
MathSciNet
CrossRef
- A. Filipin,
Nonextendibility of D(-1)-triples of the form {1,10,c},
Int. J. Math. Math. Sci. 14 (2005), 2217-2226.
MathSciNet
CrossRef
- A. Filipin and Y. Fujita,
The number of D(-1)-quadruples,
Math. Commun. 15 (2010), 381-391.
MathSciNet
- Z. Franušić,
Diophantine quadruples in the ring Z[√2],
Math. Commun. 9(2004), 141-148.
MathSciNet
- Z. Franušić,
Diophantine quadruples in Z[√(4k+3)],
Ramanujan J. 17 (2008), 77-88.
MathSciNet
CrossRef
- Z. Franušić,
A Diophantine problem in Z[(1+ √d)/2],
Stud. Sci. Math. Hung. 46 (2009), 103-112.
MathSciNet
CrossRef
- Z. Franušić,
Diophantine quadruples in the ring of integers of
Q(√32), Miskolc Math. Notes 14 (2013), 893-903 .
MathSciNet
- Y. Fujita,
The extensibility of D(-1)-triples {1,b,c},
Pub. Math. Debrecen 70 (2007), 103-117.
MathSciNet
- H. Gupta and K. Singh,
On k-triad sequences,
Internat. J. Math. Math. Sci. 8 (1985), 799-804.
MathSciNet
CrossRef
- B. He and A. Togbé,
On the D(-1)-triple {1, k2+1, k2+2k+2}
and its unique D(-1)-extension,
J. Number Theory 131 (2011), 120-137.
MathSciNet
CrossRef
- S. P. Mohanty and A. M. S. Ramasamy,
On P{r,k} sequences,
Fibonacci Quart. 23 (1985), 36-44.
MathSciNet
- I. Soldo,
On the existence of Diophantine quadruples in Z[√-2],
Miskolc Math. Notes 14 (2013), 261-273.
MathSciNet
CrossRef
- I. Soldo,
On the extensibility of D(-1)-triples
{1,b,c} in the ring Z[√-t], t > 0,
Studia Sci. Math. Hungar. 50 (2013), 296-330.
MathSciNet
CrossRef
- I. Soldo,
D(-1)-triples of the form {1,b,c} in the ring
Z[√-t], t > 0,
Bull. Malays. Math. Sci. Soc., to appear.
Rad HAZU Home Page