Rad HAZU, Matematičke znanosti, Vol. 18 (2014), 7-13.
A NOTE ON THE NUMBER OF D(4)-QUINTUPLES
Ljubica Baćić and Alan Filipin
Primary School Nikola Andrić, 32000 Vukovar, Croatia
e-mail: ljubica.bacic@skole.hr
Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb, Croatia
e-mail: filipin@master.grad.hr
Abstract. In this paper we will significantly improve the known
bound on the number of D(4)-quintuples, illustrating the elegant use of
the results the authors proved in [1] together with more efficient way of
counting the number of m-tuples that was introduced in [5]. More precisely,
we prove that there are at most 7 · 1036 D(4)-quintuples.
2010 Mathematics Subject Classification.
11D09, 11J68.
Key words and phrases. Diophantine tuples, simultaneous Diophantine equations.
Full text (PDF) (free access)
References:
- Lj. Baćić and A. Filipin,
On the extendibility of D(4)-pairs, Math. Communn. 18 (2013), 447-456.
MathSciNet
- A. Dujella,
Diophantine m-tuples,
http://web.math.pmf.unizg.hr/~duje/dtuples.html.
- A. Dujella and M. Mikić,
On the torsion group of elliptic curves induced by D(4)-triples,
An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 22 (2014), 79-90.
MathSciNet
- A. Dujella and A. M. S. Ramasamy,
Fibonacci numbers and sets with the property D(4),
Bull. Belg. Math. Soc. Simon Stevin 12(3) (2005), 401-412.
MathSciNet
- C. Elsholtz, A. Filipin and Y. Fujita,
On Diophantine quintuples and D(-1)-quadruples,
Monatsh. Math. 175 (2014), 227-239.
MathSciNet
CrossRef
- A. Filipin,
There does not exist a D(4)-sextuple, J. Number Theory 128 (2008), 1555-1565.
MathSciNet
CrossRef
- A. Filipin,
An irregular D(4)-quadruple cannot be extended to a quintuple,
Acta Arith. 136 (2009), 167-176.
MathSciNet
CrossRef
- A. Filipin,
There are only finitely many D(4)-quintuples,
Rocky Mountain J. Math. 41 (2011), 1847-1860.
MathSciNet
CrossRef
- I. M. Vinogradov,
Elements of number theory, Dover, New York, 1954.
MathSciNet
- W. Wu and Bo He,
On Diophantine quintuple conjecture,
Proc. Japan Acad. A Math. Sci. 90 (2014), 84-86.
MathSciNet
CrossRef
Rad HAZU Home Page