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THE HERMITE-HADAMARD INEQUALITY FOR

MϕMψ-h-CONVEX FUNCTIONS AND RELATED

INTERPOLATIONS

SANJA VAROŠANEC

Abstract. In this paper we consider the Hermite-Hadamard inequal-

ity for MϕMψ-h-convex functions. An MϕMψ-h-convexity covers sev-
eral particular types of generalized convexity such as a harmonic-h-

convexity, a log-h-convexity, (h, p)-convexity, MpA-h-convexity, MϕMψ-

convexity etc. The Hermite-Hadamard type inequalities with two and
with n nodes are given. Special attention is paid to a dyadic partition

of an interval and related interpolations.

1. Introduction

In recent decades we have witnessed the emergence of various types of
convexity. In addition to the classical convexity, we find the following vari-
ants of convexity in the literature: s-convexity, Godunova-Levin convexity,
P -convexity, h-convexity, strong convexity, m-convexity, MN -convexity, MT
convexity, etc. For each type of convexity, one of the first results to be studied
is the Hermite-Hadamard inequality. For the classical convexity, the Hermite-
Hadamard inequality has the following statement.

For an integrable convex function f : [a, b] → R, the following sequence of
inequalities holds:

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ 1

2
[f(a) + f(b)].(1.1)

The natural question which arises in connection with this inequality is a ques-
tion of its refinement. In recent literature, we find several articles on this topic.
Here we have to mention article [9] where we find the following refinement.

Theorem A Assume that f : [a, b] → R is a convex function on [a, b].
Then for all λ ∈ [0, 1], we have

(1.2) f

(
a+ b

2

)
≤ m(λ) ≤ 1

b− a

∫ b

a

f(x) dx ≤M(λ) ≤ 1

2
[f(a) + f(b)],
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where

m(λ) := λf

(
λb+ (2− λ)a

2

)
+ (1− λ)f

(
(1 + λ)b+ (1− λ)a

2

)
and

M(λ) :=
1

2

(
f(λb+ (1− λ)a) + λf(a) + (1− λ)f(b)

)
.

If λ =
1

2
, then points in the left refinement are

3a+ b

4
and

a+ 3b

4
, i.e

m

(
1

2

)
=

1

2
f

(
3a+ b

4

)
+

1

2
f

(
a+ 3b

4

)
in which we recognize the refinement which occurs in [15, p.37] and in articles
about other type of convexity such as [2, 17].

Results from [9] were generalized in [7] for a more general class of functions.
Namely, in [7], author obtained corresponding results for h-convex functions.
Let us recall the definition of an h-convex function, [23].

Definition 1.1. Let h : J → R be a non-negative function, 〈0, 1〉 ⊆ J . A
function f : I → R is called h-convex if for any x, y from the interval I and
any t ∈ 〈0, 1〉 the following holds

f(tx+ (1− t)y) ≤ h(t)f(x) + h(1− t)f(y).

This concept covers some classes such as a class of convex functions, a
class of s-convex functions in the second sense (h(t) = ts, s ∈ 〈0, 1]), a class of
Godunova-Levin functions (h(t) = 1

t ), a class of P-convex functions (h(t) = 1).
The Hermite-Hadamard inequality for an h-convex function was first given in
[4] and [21] and has the following form:

Theorem B If h is an integrable function, h( 1
2 ) 6= 0, then for an integrable

h-convex function f : [a, b]→ R, the following sequence of inequalities holds:

(1.3)
1

2h( 1
2 )
f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ [f(a) + f(b)]

∫ 1

0

h(x) dx.

If f is h-concave, then the reversed signs of inequalities hold in (1.3).

The following Hermite-Hadamard-type result for an h-convex function can
be found in [7] as a consequence of Theorem 2 from [7] and the corresponding
Remark in the same paper.
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Theorem C If f is a non-negative, integrable, h-convex function on [a, b]
with h ∈ L[0, 1], h( 1

2 ) 6= 0, then

δ1 ≤
1

b− a

∫ b

a

f(x) dx

≤ δ2 ≤
[
[h(1− λ) + λ]f(a) + [h(λ) + 1− λ]f(b)

] ∫ 1

0

h(t) dt,(1.4)

where

δ1 :=
1

2h( 1
2 )

{
(1− λ)f

[
(1− λ)a+ (λ+ 1)b

2

]
+ λf

[
(2− λ)a+ λb

2

]}
δ2 :=

[
f
(
(1− λ)a+ λb

)
+ (1− λ)f(b) + λf(a)

] ∫ 1

0

h(t) dt.

Furthermore, if λ ∈ 〈0, 1〉 such that h(λ) 6= 0, then

(1.5)
1

2h( 1
2 )

min

{
1− λ

h(1− λ)
,
λ

h(λ)

}
f

(
a+ b

2

)
≤ δ1.

A closer look into the proof of Theorem C gives that (1.4) is valid regard-

less of non-negativity of f . Non-negativity of f in points (1−λ)a+(λ+1)b
2 and

(2−λ)a+λb
2 is neccessary only in (1.5).

If h(t) = t, i.e. if f is a convex function, then the result of Theorem C
collapses to the refinement of Hermite-Hadamard inequality (1.2). It is a

refinement which involves two nodes
(1− λ)a+ (λ+ 1)b

2
and

(2− λ)a+ λb

2
.

In paper [8], a result including n nodes was given. Here we give a version of
that result for a real function of a real variable.

Theorem D Let f be an h-convex with h ∈ L[0, 1], f ∈ L[a, b], h( 1
2 ) 6= 0.

Then for any partition

0 = λ0 < λ1 < . . . < λn−1 < λn = 1, with n ≥ 1

we have

1

2h( 1
2 )

n−1∑
j=0

(λj+1 − λj)f
((

1− λj + λj+1

2

)
a+

λj + λj+1

2
b

)

≤ 1

b− a

∫ b

a

f(x) dx

≤
n−1∑
j=0

(λj+1 − λj)×

×
[
f
(
(1− λj)a+ λjb

)
+ f

(
(1− λj+1)a+ λj+1b

)] ∫ 1

0

h(t) dx.
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In papers [7] and [8], a case of h-concavity was not considered, but from
the proofs it is clear that if f is h-concave, then inequalities in Theorems C
and D hold with the reversed signs.

The topic of this paper is a counterpart of the Hermite-Hadamard inequal-
ity for a wider class of functions which covers h-convex functions.

Let ϕ be a continuous, strictly monotone function defined on the interval
I. By Mϕ we denote a quasi-arithmetic mean:

Mϕ(x, y; t) := ϕ−1(tϕ(x) + (1− t)ϕ(y)), x, y ∈ I, t ∈ [0, 1].

It is obvious that the power mean Mp corresponds to ϕ(x) = xp if p 6= 0 and
to ϕ(x) = log x if p = 0.

Definition 1.2. Let ϕ and ψ be two continuous, strictly monotone func-
tions defined on intervals I and K respectively. Let h : J → R be a non-
negative function, 〈0, 1〉 ⊆ J and let f : I → K such that h(t)ψ(f(x)) +h(1−
t)ψ(f(y)) ∈ ψ(K) for all x, y ∈ I, t ∈ 〈0, 1〉. We say that a function f is
MϕMψ-h-convex if

(1.6) f(Mϕ(x, y; t)) ≤ ψ−1
(
h(t)ψ(f(x)) + h(1− t)ψ(f(y))

)
for all x, y ∈ I and all t ∈ 〈0, 1〉. If the sign of inequality is reversed in (1.6),
then f is called MϕMψ-h-concave.

Some particular cases of MϕMψ-h-convex functions have been recently in-
vestigated in last ten years. If h(t) = t, then MϕMψ-h-convexity collapses
to MϕMψ-convexity which was described in [15]. Paper [1] consists several
results about properties and the Jensen inequality for MϕMψ-h-convex func-
tions where Mϕ, Mψ are an arithmetic mean (A), a geometric mean (G)
or a harmonic mean (H). Furthermore, an HA-h-convexity or harmonic-h-
convexity was described in [3] and [19]. An HG-h-convexity is investigated in
[19] and an AG-h-convexity or log-h-convexity in [20]. An AMp-h-convexity
or (h, p)-convexity was described in [11] while some properties of MpA-h-
convex functions were given in [6]. Properties of MϕA-h-convex functions
were studied in [24].

In the second section, we prove the Hermite-Hadamard inequality for an
MϕMψ-h-convex function. The third section is devoted to different interpola-
tion results related to the Hermite-Hadamard inequality. We end this paper
with results related to a dyadic partition of interval [a, b].

In this paper, if some inequality has a number (n) then its reverse version,
i.e. an inequality with another sign is denoted by (Rn).
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2. The Hermite-Hadamard inequality

The following result gives a connection between the theory of h-convexity
and the theory of MϕMψ-h-convexity. As we will see below, it is the powerful
tool used in many proofs.

Proposition 2.1. Let ϕ and ψ be strictly monotone continuous functions
defined on intervals I and K respectively.

a) Let ψ be an increasing function. A function f : I → R is MϕMψ-h-
convex (MϕMψ-h-concave) if and only if ψ ◦ f ◦ϕ−1 is h-convex (h-concave).

b) Let ψ be an decreasing function. A function f is MϕMψ-h-convex
(MϕMψ-h-concave) if and only if ψ ◦ f ◦ ϕ−1 is h-concave (h-convex).

Proof. Let us suppose that ψ is increasing. For any u, v ∈ Im(ϕ) there exist
x, y ∈ I such that ϕ(x) = u, ϕ(y) = v. If f is MϕMψ-h-convex and ψ is
increasing, then for any t ∈ 〈0, 1〉

ψ(f(ϕ−1(tϕ(x) + (1− t)ϕ(y)))) ≤ h(t)ψ(f(x)) + h(1− t)ψ(f(y))

i.e.

(ψ ◦ f ◦ ϕ−1)(tu+ (1− t)v) ≤ h(t)(ψ ◦ f ◦ ϕ−1)(u) + h(1− t)(ψ ◦ f ◦ ϕ−1)(v).

So, ψ ◦ f ◦ ϕ−1 is h-convex. Other cases are proved in a similar way.

Theorem 2.2 (The Hermite-Hadamard inequality for an MϕMψ-h-convex
function). Let h be a non-negative function defined on the interval J, 〈0, 1〉 ⊆
J , h( 1

2 ) 6= 0. Let ϕ and ψ be strictly monotone continuous functions defined
on intervals I and K respectively such that ϕ is differentiable on [a, b] ⊆ I.

a) If ψ is increasing, then for an MϕMψ-h-convex function f : [a, b] → R
the following holds

1

2h( 1
2 )

(ψ ◦ f)
(
Mϕ

(
a, b;

1

2

))
≤ 1

ϕ(b)− ϕ(a)

∫ b

a

ψ(f(x))ϕ′(x) dx

≤
[
ψ(f(a)) + ψ(f(b))

] ∫ 1

0

h(t) dt,(2.7)

provided that all integrals exist.
If f is MϕMψ-h-concave, then (R2.7) holds.
b) If ψ is decreasing, then for an MϕMψ-h-convex function f (R2.7) holds.

If f is MϕMψ-h-concave, then (2.7) holds.

Proof. Let us suppose that ψ is increasing and f is MϕMψ-h-convex. Then,
by Proposition 2.1, a function ψ ◦ f ◦ ϕ−1 is h-convex on ϕ([a, b]). If ϕ
is increasing, then ϕ([a, b]) = [ϕ(a), ϕ(b)], while if ϕ is decreasing, then
ϕ([a, b]) = [ϕ(b), ϕ(a)].
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If ϕ is increasing, then applying (1.3) for a function ψ ◦ f ◦ ϕ−1, we get

1

2h( 1
2 )

(ψ ◦ f ◦ ϕ−1)
(ϕ(a) + ϕ(b)

2

)
≤ 1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

(ψ ◦ f ◦ ϕ−1)(x) dx

≤
[
(ψ ◦ f ◦ ϕ−1)(ϕ(a)) + (ψ ◦ f ◦ ϕ−1)(ϕ(b))

] ∫ 1

0

h(t) dt.

After substitution ϕ−1(x) = u, the integral in the middle term becomes∫ b

a

ψ(f(x))ϕ′(x) dx and inequality (2.7) is proved.

If ϕ is decreasing, then the middle term is 1
ϕ(a)−ϕ(b)

∫ ϕ(a)

ϕ(b)
(ψ◦f ◦ϕ−1)(x) dx

and after the same substitution we get 1
ϕ(b)−ϕ(a)

∫ b
a
ψ(f(x))ϕ′(x) dx and in-

equality (2.7) holds in this case.
All other cases are proved similarly.

Remark 2.3. Some particular cases of the above inequality are known. If
h(t) = t, then the Hermite-Hadamard-type inequality for HG-convex, GG-
convex, MpA-convex, AMp-convex, MϕA-convex and MϕMψ-convex func-
tions can be found in [16], [13], [10], [5], [22] and [14] respectively.

The Hermite-Hadamard inequality for HA-h-convex, AG-h-convex, AMr-
h-convex functions are given in [19], [20], [11] respectively.

When h has the form h(t) = h1(ts) for the fixed s ∈ 〈0, 1], then results
related to the Hermite-Hadamard inequality for h-convex functions are given
in [18].

Note that Theorem 2.2 covers all the cases already mentioned. In the
above-mentioned articles, the authors proved the Hermite-Hadamard type
inequalities directly, ab ovo. But Proposition 2.1 allows us to prove such
results much more elegantly using known results for h-convex functions.

3. Hermite-Hadamard type results with several nodes

In this section we direct our attention to Hermite-Hadamard-type results
including two or more nodes. The section is finished with several results
involving a dyadic partition of an interval. The following theorem is a gener-
alization of Theorem C given in MϕMψ-h-convexity settings. In fact, this is
a Hermite-Hadamard-type result which on the left-hand side includes values
of a function in two points:

ϕ−1

(
(1− λ)ϕ(a) + (1 + λ)ϕ(b)

2

)
and ϕ−1

(
(2− λ)ϕ(a) + λϕ(b)

2

)
and which, in particular case, leads to the refinement of the Hermite-Hada-
mard inequality for an MϕMψ-convex function.
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Theorem 3.1. Let h be a non-negative function defined on the interval
J, 〈0, 1〉 ⊆ J , h( 1

2 ) 6= 0. Let ϕ and ψ be strictly monotone continuous func-
tions defined on intervals I and K respectively such that ϕ is differentiable on
[a, b] ⊆ I. Let f : I → R.

(i) If ψ is increasing, then for an MϕMψ-h-convex function f the following
holds

∆1 ≤
1

ϕ(b)− ϕ(a)

∫ b

a

ψ(f(x))ϕ′(x) dx

≤ ∆2 ≤
{

[h(1− λ) + λ]ψ(f(a)) + [h(λ) + 1− λ]ψ(f(b))
}∫ 1

0

h(t) dt,(3.8)

where

∆1 :=
1

2h( 1
2 )

{
(1− λ)(ψ ◦ f)

(
Mϕ

(
a, b;

1− λ
2

))
+λ(ψ ◦ f)

(
Mϕ

(
a, b;

2− λ
2

))}
∆2 :=

[
ψ(f(Mϕ(a, b; 1− λ))) + (1− λ)ψ(f(b)) + λψ(f(a))

] ∫ 1

0

h(t) dt,

provided that all integrals exist.

Furthermore, if h(λ), h(1 − λ) 6= 0 and (ψ ◦ f)
(
Mϕ

(
a, b; 1−λ

2

))
, (ψ ◦

f)
(
Mϕ

(
a, b; 2−λ

2

))
≥ 0 for some λ ∈ 〈0, 1〉, then

1

2h( 1
2 )

min

{
1− λ

h(1− λ)
,
λ

h(λ)

}
(ψ ◦ f)

(
Mϕ

(
a, b;

1

2

))
≤ ∆1.(3.9)

If f is MϕMψ-h-concave, then (R3.8) and (R3.9) (with change min→ max)
hold.

(ii) If ψ is decreasing and f is MϕMψ-h-convex, then (R3.8) and (R3.9)
(with change min→ max) hold. If ψ is decreasing and f is MϕMψ-h-concave,
then (3.8) and (3.9) are valid.

Proof. Let us prove the case when ψ is increasing. Other cases are done in
the similar manner. Denote G := ψ◦f . Since f is MϕMψ-h-convex on I, then
G ◦ ϕ−1 is h-convex on Im(ϕ) and applying Theorem C on function G ◦ ϕ−1,
we get

δ1 =
1

2h( 1
2 )

{
(1− λ)(G ◦ ϕ−1)

(
(1− λ)ϕ(a) + (1 + λ)ϕ(b)

2

)
+λ(G ◦ ϕ−1)

(
(2− λ)ϕ(a) + λϕ(b)

2

)}
δ2 =

[
(G ◦ ϕ−1)((1− λ)ϕ(a) + λϕ(b)) + (1− λ)G(b) + λG(a)

] ∫ 1

0

h(t) dt.
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The second term in (1.4) becomes 1
ϕ(b)−ϕ(a)

∫ b
a
ψ(f(x))ϕ′(x) dx and the fourth

term in (1.4) becomes

[
ψ(f(Mϕ(a, b; 1− λ))) + (1− λ)ψ(f(b)) + λψ(f(a))

] ∫ 1

0

h(t) dt.

Since

(G ◦ ϕ−1)

(
(1− λ)ϕ(a) + (1 + λ)ϕ(b)

2

)
= (ψ ◦ f)

(
Mϕ

(
a, b;

1− λ
2

))
(G ◦ ϕ−1)

(
(2− λ)ϕ(a) + λϕ(b)

2

)
= (ψ ◦ f)

(
Mϕ

(
a, b;

2− λ
2

))
(G ◦ ϕ−1) ((1− λ)ϕ(a) + λϕ(b)) = (ψ ◦ f)(Mϕ(a, b; 1− λ))

we get (3.8).
Let us prove inequality (3.9). Let us rewrite δ1 on this way:

2h

(
1

2

)
δ1 =

1− λ
h(1− λ)

h(1− λ)(G ◦ ϕ−1)

(
(1− λ)ϕ(a) + (1 + λ)ϕ(b)

2

)
+

λ

h(λ)
h(λ)(G ◦ ϕ−1)

(
(2− λ)ϕ(a) + λϕ(b)

2

)
≥ min

{
1− λ

h(1− λ)
,
λ

h(λ)

}
×

×
{

(h(1− λ)(G ◦ ϕ−1)

(
(1− λ)ϕ(a) + (1 + λ)ϕ(b)

2

)
+ h(λ)(G ◦ ϕ−1)

(
(2− λ)ϕ(a) + λϕ(b)

2

)}
≥ min

{
1− λ

h(1− λ)
,
λ

h(λ)

}
×

×(G ◦ ϕ−1)

[
(1− λ)

(1− λ)ϕ(a) + (λ+ 1)ϕ(b)

2
+ λ

(2− λ)a+ λb

2

]
= min

{
1− λ

h(1− λ)
,
λ

h(λ)

}
(G ◦ ϕ−1)

(
ϕ(a) + ϕ(b)

2

)
= min

{
1− λ

h(1− λ)
,
λ

h(λ)

}
(ψ ◦ f)

(
Mϕ

(
a, b;

1

2

))
.

Corollary 3.2. Let the assumptions of Theorem 3.1 hold.
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(i) If ψ is increasing, then for an MϕMψ-h-convex function f : I → R the
following holds:

1

4h2( 1
2 )

(ψ ◦ f)
(
Mϕ

(
a, b;

1

2

))
≤ 1

4h( 1
2 )

{
(ψ ◦ f)

(
Mϕ

(
a, b;

1

4

))
+ (ψ ◦ f)

(
Mϕ

(
a, b;

3

4

))}

≤ 1

ϕ(b)− ϕ(a)

∫ b

a

ψ(f(x))ϕ′(x) dx

≤
{

(ψ ◦ f)
(
Mϕ

(
a, b;

1

2

))
+
ψ(f(a)) + ψ(f(b))

2

}∫ 1

0

h(t) dt

≤
[

1

2
+ h
(1

2

)] [
ψ(f(a)) + ψ(f(b))

] ∫ 1

0

h(t) dt,(3.10)

provided that all integrals exist.
If f is MϕMψ-h-concave, then (R3.10) holds.
(ii) If ψ is decreasing and f is MϕMψ-h-convex, then (R3.10) holds. If ψ

is decreasing and f is MϕMψ-h-concave, then (3.10) is valid.

Proof. Firstly we consider the case when ψ is increasing and f is MϕMψ-
h-convex. The second and the third inequalities in (3.10) are simple conse-
quences of Theorem 3.1 for λ = 1

2 . Let us prove the first and the fourth
inequalities.

For an h-convex function F the following inequality holds:

F (A) + F (B) ≥ 1

h( 1
2 )
F

(
A+B

2

)
.(3.11)

Numbers A := ϕ(a)+3ϕ(b)
4 and B := 3ϕ(a)+ϕ(b)

4 satisfy:

A+B

2
=
ϕ(a) + ϕ(b)

2

and applying (3.11) on function F := ψ ◦ f ◦ ϕ−1, we get

(ψ ◦ f)
(
Mϕ

(
a, b;

1

4

))
+ (ψ ◦ f)

(
Mϕ

(
a, b;

3

4

))
≥ 1

h( 1
2 )

(ψ ◦ f)
(
Mϕ(a, b;

1

2
)
)

and the first inequality in (3.10) holds.
Let us prove the fourth inequality. From (3.11) we get

(ψ ◦ f)
(
Mϕ(a, b;

1

2
)
)
≤ h

(1

2

)[
ψ(f(a)) + ψ(f(b))

]
and hence

(ψ◦f)
(
Mϕ

(
a, b;

1

2

))
+
ψ(f(a)) + ψ(f(b))

2
≤
[

1

2
+ h
(1

2

)] [
ψ(f(a))+ψ(f(b))

]
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and the fourth inequality in (3.10) is valid.

Corollary 3.3. Let h satisfies the assumptions of Theorem 3.1. Let f be a
positive GG-h-convex function on [a, b] ⊆ [0,∞〉. Then(

f(
√
ab)
) 1

4h2( 1
2
) ≤

[
f(

4
√
a3b)f(

4
√
ab3)

] 1

4h( 1
2
)

≤ exp

(
1

log b/a

∫ b

a

log f(x)
dx

x

)

≤
(
f(
√
ab)
√
f(a)f(b)

)H
≤
(√

f(a)f(b)
)H[ 1

2 +h( 1
2 )]
,(3.12)

where H =
∫ 1

0
h(t) dt and provided that all integrals exist.

Proof. It is a consequence of Corollary 3.2 for ψ = ϕ = log.

Remark 3.4. Inequality (3.12) for h(t) = t i.e. for GG-convex or multiplica-
tively convex function can be found in [15, p.62]. It is worth to mention that
every polynomial with non-negative coefficients is GG-convex, every real an-
alytic function f(x) =

∑
anx

n with an ≥ 0 is GG-convex on [0, R〉 where R
is the radius of convergence. Also, the Gamma function is GG-convex.

Corollary 3.5. Let h satisfies the assumptions of Theorem 3.1. Let f be a
function on [a, b] ⊆ [0,∞〉 and ϕ(x) = xp, p 6= 0.

If p > 0 and f is MϕA-h-convex, then

1

4h2( 1
2 )
f

((
ap + bp

2

)1/p
)

≤ 1

4h( 1
2 )

{
f

((
ap + 3bp

4

)1/p
)

+ f

((
3ap + bp

4

)1/p
)}

≤ p

bp − ap

∫ b

a

f(x)xp−1 dx

≤

{
f

((
ap + bp

2

)1/p
)

+
f(a) + f(b)

2

}∫ 1

0

h(t)dt

≤
[

1

2
+ h
(1

2

)]
[f(a) + f(b)]

∫ 1

0

h(t)dt,(3.13)

provided that all integrals exist.
If p < 0 and f is MϕA-h-convex, then (R3.13) holds.

Proof. It is a consequence of Corollary 3.2 for ψ(x) = x, ϕ(x) = xp.

Remark 3.6. If h(t) = t and p = 1, then 4h2( 1
2 ) = 1, 1

2 + h( 1
2 ) = 1 and

inequality (3.13) becomes the refinement of the Hermite-Hadamard inequality
(1.1).
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The following Hermite-Hadamard-type result involves more than two nodes.

Theorem 3.7. Let h be a non-negative function defined on the interval
J, 〈0, 1〉 ⊆ J , h( 1

2 ) 6= 0. Let ϕ and ψ be strictly monotone continuous func-
tions defined on intervals I and K respectively such that ϕ is differentiable on
[a, b] ⊆ I.

(i) If ψ is increasing, then for an MϕMψ-h-convex function f : I → R and
for a partition

0 = λ0 < λ1 < . . . < λn−1 < λn = 1, with n ≥ 1

we have

1

2h( 1
2 )

n−1∑
j=0

(λj+1 − λj)(ψ ◦ f)
(
Mϕ

(
a, b; 1− λj + λj+1

2

))
≤ 1

ϕ(b)− ϕ(a)

∫ b

a

ψ(f(x))ϕ′(x) dx

≤
n−1∑
j=0

(λj+1 − λj)
{

(ψ ◦ f)
(
Mϕ(a, b; 1− λj)

)
+ (ψ ◦ f)

(
Mϕ(a, b; 1− λj+1)

)}∫ 1

0

h(t) dt,(3.14)

provided that all integrals exist.
If f is MϕMψ-h-concave, then (R3.14) holds.
(ii) If ψ is decreasing and f is MϕMψ-h-convex, then (R3.14) holds. If ψ

is decreasing and f is MϕMψ-h-concave, then (3.14) is valid.

Proof. Let ψ be increasing and f be MϕMψ-h-convex. Denote G := ψ ◦ f .
Then a function ψ ◦ f ◦ϕ−1 is h-convex on ϕ([a, b]) and applying Theorem D
on function G ◦ ϕ−1, we get

1

2h( 1
2 )

n−1∑
j=0

(λj+1 − λj)G
(
ϕ−1

((
1− λj + λj+1

2

)
ϕ(a) +

λj + λj+1

2
ϕ(b)

))

≤ 1

ϕ(b)− ϕ(a)

∫ b

a

G(x)ϕ′(x) dx

≤
n−1∑
j=0

(λj+1 − λj)
{
G
(
ϕ−1 ((1− λj)ϕ(a) + λjϕ(b))

)
+G

(
ϕ−1 ((1− λj+1)ϕ(a) + λj+1ϕ(b))

)}∫ 1

0

h(t) dt.(3.15)
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Using the fact that G
(
ϕ−1

((
1− λj+λj+1

2

)
ϕ(a) +

λj+λj+1

2 ϕ(b)
))

= (ψ ◦

f)
(
Mϕ

(
a, b; 1 − λj+λj+1

2

))
etc, we get (3.14). Other cases are done in a

similar manner.

If a partition is equidistant, then the series of inequalities in (3.14) can be
extended. Namely, we have the following result.

Theorem 3.8. Let h be a non-negative function defined on the interval
J, 〈0, 1〉 ⊆ J , h( 1

2 ) 6= 0. Let ϕ and ψ be strictly monotone continuous func-
tions defined on intervals I and K respectively such that ϕ is differentiable on
[a, b] ⊆ I. Let f : I → R. Let n ≥ 2.

(i) If ψ is increasing, then for an MϕMψ-h-convex function f the following
inequalities hold

1

4h2( 1
2 )

(ψ ◦ f)
(
Mϕ

(
a, b;

1

2

))
≤ l(n) ≤ 1

ϕ(b)− ϕ(a)

∫ b

a

ψ(f(x))ϕ′(x) dx ≤ L(n)

≤ 1

n

[
ψ(f(a)) + ψ(f(b))

]1 + 2

n−1∑
j=1

h

(
j

n

)
∫ 1

0

h(t) dt,(3.16)

provided that all integrals exist and where

l(n) =
1

2nh( 1
2 )

n−1∑
j=0

(ψ ◦ f)
(
Mϕ

(
a, b;

2n− 2j − 1

2n

))

L(n) =
2

n

∫ 1

0

h(t) dt


n−1∑
j=1

(ψ ◦ f)
(
Mϕ

(
a, b;

j

n

))
+
ψ(f(a)) + ψ(f(b))

2

 .

If f is MϕMψ-h-concave, then (R3.16) holds.
(ii) If ψ is decreasing and f is MϕMψ-h-convex, then (R3.16) holds. If ψ

is decreasing and f is MϕMψ-h-concave, then (3.16) is valid.

Proof. Let us suppose that ψ is increasing and f is MϕMψ-h-convex. The
second and the third inequalities in (3.16) are simply consequences of Theorem

3.7 when we apply it on points: λj = j
n . Let us prove the first inequality.

Putting in (3.11) F = ψ ◦ f ◦ ϕ−1 = G ◦ ϕ−1 and

A =
2n− 2j − 1

2n
ϕ(a) +

2j + 1

2n
ϕ(b), B =

2j + 1

2n
ϕ(a) +

2n− 2j − 1

2n
ϕ(b)
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and since A+B = ϕ(a) + ϕ(b), we get

G
(
ϕ−1

(2n− 2j − 1

2n
ϕ(a) +

2j + 1

2n
ϕ(b)

))
+G

(
ϕ−1

(2j + 1

2n
ϕ(a) +

2n− 2j − 1

2n
ϕ(b)

))
≥ 1

h
(

1
2

)G(ϕ−1
(ϕ(a) + ϕ(b)

2

))
,

i.e.

G
(
Mϕ

(
a, b;

2n− 2j − 1

2n

))
+G

(
Mϕ

(
a, b;

2j + 1

2n

))
≥ 1

h
(

1
2

)G(Mϕ

(
a, b;

1

2

))
.

Let us write the sum
∑n−1
j=0 (ψ ◦ f)

(
Mϕ

(
a, b; 2n−2j−1

2

))
twice and add the

addend indexed by j from the first sum with the addend indexed by (n−j−1)
from the second sum. Then we get

2

n−1∑
j=0

(ψ ◦ f)
(
Mϕ

(
a, b;

2n− 2j − 1

2n

))

=

n−1∑
j=0

(ψ ◦ f)
(
Mϕ

(
a, b;

2n− 2j − 1

2n

))
+ (ψ ◦ f)

(
Mϕ

(
a, b;

2j + 1

2n

))

≥
n−1∑
j=0

1

h
(

1
2

) (ψ ◦ f)
(
Mϕ

(
a, b;

1

2

))
=

n

h
(

1
2

) (ψ ◦ f)
(
Mϕ

(
a, b;

1

2

))
and the first inequality in (3.16) follows.

In the proof of the fourth inequality in (3.16) we apply a definition of
MϕMψ-h-convexity on each addend in the sum and transform it:

ψ(f(a)) + ψ(f(b)) + 2

n−1∑
j=1

(ψ ◦ f)
(
Mϕ

(
a, b;

j

n

))

≤ ψ(f(a)) + ψ(f(b)) + 2

n−1∑
j=1

(
h
( j
n

)
ψ(f(a)) + h

(n− j
n

)
ψ(f(b))

)

=
[
ψ(f(a)) + ψ(f(b))

]1 + 2

n−1∑
j=1

h
( j
n

)
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and from this estimate the fourth inequality in (3.16) follows.

In the following theorem we consider a particular partition of interval [0, 1],
so-called a dyadic partition. Let m ≥ 1 be an integer and let

λj :=
j

2m
, j = 0, 1, 2, . . . , 2m.

Note that Corollary 3.2 contains result of this type for m = 1. In literature,
there are no similar results for h-convex functions. Therefore, we can not use
Proposition 2.1 in the proof of the following theorem.

Theorem 3.9. Let h be a non-negative function defined on the interval
J, 〈0, 1〉 ⊆ J , h( 1

2 ) 6= 0. Let ϕ and ψ be strictly monotone continuous func-
tions defined on intervals I and K respectively such that ϕ is differentiable on
[a, b] ⊆ I. Let f : I → R.

(i) If ψ is increasing, then for an MϕMψ-h-convex function f and m ∈ N
the following holds

l(2m+1) ≥ 1

2h( 1
2 )
l(2m)(3.17)

L(2m+1) ≤
(

1

2
+ h
(1

2

))
L(2m)(3.18)

L(2m) ≤ 8h2
(1

2

)∫ 1

0

h(t)dt · l(2m) +
1

2m

∫ 1

0

h(t)dt
{
ψ(f(a)) + ψ(f(b))

− 2h
(1

2

)
ψ

(
f
(
Mϕ(a, b,

2m+1 − 1

2m+1
)
))

− 2h
(1

2

)
ψ

(
f
(
Mϕ(a, b,

1

2m+1
)
))}

,(3.19)

where l(n) and L(n) are defined as in Theorem 3.8.
If f is MϕMψ-h-concave, then (R3.17), (R3.18) and (R3.19) hold.
(ii) If ψ is decreasing and f is MϕMψ-h-convex, then (R3.17), (R3.18)

and (R3.19) hold. If ψ is decreasing and f is MϕMψ-h-concave, then (3.17),
(3.18) and (3.19) hold.

Proof. We prove the case when ψ is increasing and f is MϕMψ-h-convex. We
use notation: F := ψ ◦ f ◦ ϕ−1, A := ϕ(a) and B := ϕ(B).

From Theorem 3.8 we get:

l(2m+1) =
1

2m+2h( 1
2 )

2m+1−1∑
j=0

F

(
(2m+2 − 2j − 1)A+ (2j + 1)B

2m+2

)
.
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Since

{0, 1, 2, . . . 2m+1 − 1} = {0, 2, 4, . . . , 2m+1 − 2} ∪ {1, 3, 5, . . . , 2m+1 − 1}
= {2k : k = 0, 1, . . . , 2m − 1} ∪ {2k + 1 : k = 0, 1, . . . , 2m − 1},

we obtain

l(2m+1) =
1

2m+2h( 1
2 )

{
2m−1∑
k=0

F

(
(2m+2 − 4k − 1)A+ (4k + 1)B

2m+2

)

+

2m−1∑
k=0

F

(
(2m+2 − 4k − 3)A+ (4k + 3)B

2m+2

)}
.

Since F is h-convex, then F (x) + F (y) ≥ 1
h( 1

2 )
F (x+y

2 ). Putting in this in-

equality x = (2m+2−4k−1)A+(4k+1)B
2m+2 and y = (2m+2−4k−3)A+(4k+3)B

2m+2 , we get

that l(2m+1) is bounded from below as follows

l(2m+1) ≥ 1

2m+2h( 1
2 )

2m−1∑
k=0

1

h( 1
2 )
F

(
(2m+1 − 2k − 1)A+ (2k + 1)B

2m+1

)
=

1

2h( 1
2 )
l(2m).

Hence (3.17) is proved.
Let us prove (3.18). Again, we split the sum in L(2m+1) into two sums:

one with odd indices and the second sum with even indices.

L(2m+1) =
1

2m

∫ 1

0

h(t)dt

{
F (A) + F (B)

2
+

2m−1∑
k=1

F

(
(2m+1 − 2k)A+ 2kB

2m+1

)

+

2m−1∑
k=0

F

(
(2m+1 − 2k − 1)A+ (2k + 1)B

2m+1

)}

=
1

2m

∫ 1

0

h(t)dt

{
2m−1∑
k=0

F

(
(2m+1 − 2k − 1)A+ (2k + 1)B

2m+1

)

+

[
1

2

2m−1∑
k=1

F

(
(2m+1 − 2k)A+ 2kB

2m+1

)
+
F (A)

2

]

+

[
1

2

2m−1∑
k=1

F

(
(2m+1 − 2k)A+ 2kB

2m+1

)
+
F (B)

2

]}

=
1

2m

∫ 1

0

h(t)dt

{
2m−1∑
k=0

F

(
[(2m − k)A+ kB]+[(2m − k − 1)A+ (k + 1)B]

2 · 2m

)
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+
1

2

2m−1∑
k=0

F

(
(2m+1 − 2k)A+ 2kB

2m+1

)

+
1

2

2m−1∑
r=0

F

(
(2m − r − 1)A+ (r + 1)B

2m

)}

≤ 1

2m

∫ 1

0

h(t)dt

{
2m−1∑
k=0

h
(1

2

)
F

(
(2m − k)A+ kB

2m

)

+

2m−1∑
k=0

h
(1

2

)
F

(
(2m − k − 1)A+ (k + 1)B

2m

)

+
1

2

2m−1∑
k=0

F

(
(2m − k)A+ kB

2m

)
+

1

2

2m−1∑
r=0

F

(
(2m − r − 1)A+ (r + 1)B

2m

)}

=
1

2m

∫ 1

0

h(t)dt

(
1

2
+ h
(1

2

))
×

×

{
2m−1∑
k=0

[
F

(
(2m − k)A+ kB

2m

)
+ F

(
(2m − k − 1)A+ (k + 1)B

2m

)]}

=

(
1

2
+ h
(1

2

))
L(2m).

Let us prove (3.19). Note that for k = 1, 2, . . . , 2m − 1

(2m − k)A+ kB

2m

=
1

2

(
(2m+1 − 2k + 1)A+ (2k − 1)B

2m+1
+

(2m+1 − 2k − 1)A+ (2k + 1)B

2m+1

)
Since F is h-convex, we get

2m−1∑
k=1

F
( (2m − k)A+ kB

2m

)
≤

2m−1∑
k=1

h
(1

2

){
F

(
(2m+1− 2k + 1)A+ (2k − 1)B

2m+1

)
+ F

(
(2m+1 − 2k − 1)A+ (2k + 1)B

2m+1

)}

= h
(1

2

)2

2m−1∑
j=0

F

(
(2m+1 − 2j − 1)A+ (2j + 1)B

2m+1

)

−F
(

(2m+1 − 1)A+B

2m+1

)
− F

(
A+ (2m+1 − 1)B

2m+1

)]
.
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Adding on the both sides F (A)+F (B)
2 and using notations for l and L, we get

2m−1∫ 1

0
h(t)dt

L(2m) ≤ 2m+2h2
(1

2

)
· l(2m) +

F (A) + F (B)

2

− h2
(1

2

)
F

(
(2m+1 − 1)A+B

2m+1

)
− h2

(1

2

)
F

(
A+ (2m+1 − 1)B

2m+1

)
and (3.19) is proved.

If h( 1
2 ) ≤ 1

2 , then the previous Theorem gives a sequence of interpolations
of the Hermite-Hadamard inequality.

Corollary 3.10. Suppose that the assumptions of Theorem 3.9 hold. Let
h( 1

2 ) ≤ 1
2 .

If ψ is increasing and f is an MϕMψ-h-convex integrable function such
that ψ ◦ f ◦ ϕ−1 is non-negative, then the following holds

1

4h2( 1
2 )

(ψ ◦ f)
(
Mϕ

(
a, b;

1

2

))
≤ l(2) ≤ l(22) ≤ . . . ≤ l(2m) ≤ . . .

≤ 1

ϕ(b)− ϕ(a)

∫ b

a

ψ(f(x))ϕ′(x) dx

≤ . . . ≤ L(2m) ≤ . . . ≤ L(22) ≤ L(2)

≤
[

1

2
+ h
(1

2

)] [
ψ(f(a)) + ψ(f(b))

] ∫ 1

0

h(t) dt.(3.20)

Additionally, if
∫ 1

0
h(t) dt ≤ 1

2 and if ψ ◦ f ◦ ϕ−1 is bounded on ϕ([a, b]), then

(3.21) lim
m→∞

(L(2m)− l(2m)) = 0

and

(3.22) lim
m→∞

l(2m) =
1

ϕ(b)− ϕ(a)

∫ b

a

ψ(f(x))ϕ′(x) dx = lim
m→∞

L(2m).

Proof. If h( 1
2 ) ≤ 1

2 , then 1
2h( 1

2 )
≥ 1 and 1

2 + h
(

1
2

)
≤ 1 and from (3.17) and

(3.18) we have that for any m ≥ 1

l(2m+1) ≥ l(2m) and L(2m+1) ≤ L(2m).

Hence, applying Theorem 3.8, Corollary 3.2 and above inequalities, we get
(3.20).

If h( 1
2 ) ≤ 1

2 and
∫ 1

0
h(t) dt ≤ 1

2 , then 8h2
(

1
2

) ∫ 1

0
h(t)dt ≤ 1 and (3.21)

follows from (3.19). The sequence (l(2m))m is a non-decreasing sequence,
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bounded from above with
1

ϕ(b)− ϕ(a)

∫ b

a

ψ(f(x))ϕ′(x) dx, so, it is conver-

gent. Similarly, (L(2m))m is convergent and from (3.21) and from inequality

l(2m) ≤ 1

ϕ(b)− ϕ(a)

∫ b

a

ψ(f(x))ϕ′(x) dx ≤ L(2m)

we get (3.22).

Under assumptions of Corollary 3.10 we conclude that the larger m makes
l(2m) and L(2m) closer to the integral mean of ψ ◦ f ◦ ϕ−1. The behavior of
convex functions involving dyadic partition is studied in [12]. Here we extend
those results to a more general function class.

Conclusion. In this paper, we study Hermite-Hadamard-type inequalities
for MϕMψ-h-convex functions. Until now we have found similar results only
for particular subclasses of the class of MϕMψ-h-convex functions. The con-
nection between h-convex function and MϕMψ-h-convex function which is
described in Proposition 2.1 has a crucial role in the proofs and the use of it
makes proofs more elegant. It would be interesting to see how this method
impacts the study of other properties of MϕMψ-h-convex functions.
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Hermite-Hadamardova nejednakost za MϕMψ-h-konveksne funkcije
i odgovarajuće interpolacije

Sanja Varošanec

Sažetak. U članku se promatra Hermite-Hadamardova ne-

jednakost za MϕMψ-h-konveksne funkcije. Kao što je poznato,

MϕMψ -h-konveksnost generalizira nekoliko klasa funkcija kao što

su harmonijski-h-konveksne funkcije, logaritamski h-konveksne,

(h, p)-konveksne, MpA-h-konveksne, MϕMψ konveksne funkcije

i druge. Dokazane su nejednakosti Hermite-Hadamardovog tipa

koje uključuju dva i vǐse čvorova, a posebna je pažnja posvećena

dijadskoj particiji intervala i profinjenju nejednakosti koja se

javlja u tom slučaju.
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