RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI MATEMATIČKE ZNANOSTI

S. Varošanec
The Hermite-Hadamard inequality for $M_{\varphi} M_{\psi}$-h-convex functions and related interpolations
Manuscript accepted for publication

This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. It has not been copy-edited, proofread, or finalized by Rad HAZU Production staff.

THE HERMITE-HADAMARD INEQUALITY FOR $M_{\varphi} M_{\psi}-h$-CONVEX FUNCTIONS AND RELATED INTERPOLATIONS

SANJA VAROŠANEC

Abstract

In this paper we consider the Hermite-Hadamard inequality for $M_{\varphi} M_{\psi}$-h-convex functions. An $M_{\varphi} M_{\psi}$ - h-convexity covers several particular types of generalized convexity such as a harmonic- h convexity, a log- h-convexity, (h, p)-convexity, $M_{p} A$ - h-convexity, $M_{\varphi} M_{\psi^{-}}$ convexity etc. The Hermite-Hadamard type inequalities with two and with n nodes are given. Special attention is paid to a dyadic partition of an interval and related interpolations.

1. Introduction

In recent decades we have witnessed the emergence of various types of convexity. In addition to the classical convexity, we find the following variants of convexity in the literature: s-convexity, Godunova-Levin convexity, P-convexity, h-convexity, strong convexity, m-convexity, $M N$-convexity, $M T$ convexity, etc. For each type of convexity, one of the first results to be studied is the Hermite-Hadamard inequality. For the classical convexity, the HermiteHadamard inequality has the following statement.

For an integrable convex function $f:[a, b] \rightarrow \mathbb{R}$, the following sequence of inequalities holds:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{1}{2}[f(a)+f(b)] \tag{1.1}
\end{equation*}
$$

The natural question which arises in connection with this inequality is a question of its refinement. In recent literature, we find several articles on this topic. Here we have to mention article [9] where we find the following refinement.

Theorem A Assume that $f:[a, b] \rightarrow \mathbb{R}$ is a convex function on $[a, b]$. Then for all $\lambda \in[0,1]$, we have

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq m(\lambda) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq M(\lambda) \leq \frac{1}{2}[f(a)+f(b)] \tag{1.2}
\end{equation*}
$$

2020 Mathematics Subject Classification. 26A51, 26A15.
Key words and phrases. the Hermite-Hadamard inequality, $M_{\varphi} M_{\psi}$-h-convex function, quasi-arithmetic mean, dyadic partition.
where

$$
m(\lambda):=\lambda f\left(\frac{\lambda b+(2-\lambda) a}{2}\right)+(1-\lambda) f\left(\frac{(1+\lambda) b+(1-\lambda) a}{2}\right)
$$

and

$$
M(\lambda):=\frac{1}{2}(f(\lambda b+(1-\lambda) a)+\lambda f(a)+(1-\lambda) f(b)) .
$$

If $\lambda=\frac{1}{2}$, then points in the left refinement are $\frac{3 a+b}{4}$ and $\frac{a+3 b}{4}$, i.e

$$
m\left(\frac{1}{2}\right)=\frac{1}{2} f\left(\frac{3 a+b}{4}\right)+\frac{1}{2} f\left(\frac{a+3 b}{4}\right)
$$

in which we recognize the refinement which occurs in $[15$, p. 37$]$ and in articles about other type of convexity such as $[2,17]$.

Results from [9] were generalized in [7] for a more general class of functions. Namely, in [7], author obtained corresponding results for h-convex functions. Let us recall the definition of an h-convex function, [23].

Definition 1.1. Let $h: J \rightarrow \mathbb{R}$ be a non-negative function, $\langle 0,1\rangle \subseteq J . A$ function $f: I \rightarrow \mathbb{R}$ is called h-convex if for any x, y from the interval I and any $t \in\langle 0,1\rangle$ the following holds

$$
f(t x+(1-t) y) \leq h(t) f(x)+h(1-t) f(y) .
$$

This concept covers some classes such as a class of convex functions, a class of s-convex functions in the second sense $\left(h(t)=t^{s}, s \in\langle 0,1]\right)$, a class of Godunova-Levin functions ($h(t)=\frac{1}{t}$), a class of P-convex functions $(h(t)=1)$. The Hermite-Hadamard inequality for an h-convex function was first given in [4] and [21] and has the following form:

Theorem B If h is an integrable function, $h\left(\frac{1}{2}\right) \neq 0$, then for an integrable h-convex function $f:[a, b] \rightarrow \mathbb{R}$, the following sequence of inequalities holds:

$$
\begin{equation*}
\frac{1}{2 h\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq[f(a)+f(b)] \int_{0}^{1} h(x) d x . \tag{1.3}
\end{equation*}
$$

If f is h-concave, then the reversed signs of inequalities hold in (1.3).
The following Hermite-Hadamard-type result for an h-convex function can be found in [7] as a consequence of Theorem 2 from [7] and the corresponding Remark in the same paper.

Theorem C If f is a non-negative, integrable, h-convex function on $[a, b]$ with $h \in L[0,1], h\left(\frac{1}{2}\right) \neq 0$, then

$$
\begin{align*}
\delta_{1} & \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& \leq \delta_{2} \leq[[h(1-\lambda)+\lambda] f(a)+[h(\lambda)+1-\lambda] f(b)] \int_{0}^{1} h(t) d t \tag{1.4}
\end{align*}
$$

where

$$
\begin{aligned}
& \delta_{1}:=\frac{1}{2 h\left(\frac{1}{2}\right)}\left\{(1-\lambda) f\left[\frac{(1-\lambda) a+(\lambda+1) b}{2}\right]+\lambda f\left[\frac{(2-\lambda) a+\lambda b}{2}\right]\right\} \\
& \delta_{2}:=[f((1-\lambda) a+\lambda b)+(1-\lambda) f(b)+\lambda f(a)] \int_{0}^{1} h(t) d t
\end{aligned}
$$

Furthermore, if $\lambda \in\langle 0,1\rangle$ such that $h(\lambda) \neq 0$, then

$$
\begin{equation*}
\frac{1}{2 h\left(\frac{1}{2}\right)} \min \left\{\frac{1-\lambda}{h(1-\lambda)}, \frac{\lambda}{h(\lambda)}\right\} f\left(\frac{a+b}{2}\right) \leq \delta_{1} . \tag{1.5}
\end{equation*}
$$

A closer look into the proof of Theorem C gives that (1.4) is valid regardless of non-negativity of f. Non-negativity of f in points $\frac{(1-\lambda) a+(\lambda+1) b}{2}$ and $\frac{(2-\lambda) a+\lambda b}{2}$ is neccessary only in (1.5).

If $h(t)=t$, i.e. if f is a convex function, then the result of Theorem C collapses to the refinement of Hermite-Hadamard inequality (1.2). It is a refinement which involves two nodes $\frac{(1-\lambda) a+(\lambda+1) b}{2}$ and $\frac{(2-\lambda) a+\lambda b}{2}$. In paper [8], a result including n nodes was given. Here we give a version of that result for a real function of a real variable.

Theorem D Let f be an h-convex with $h \in L[0,1], f \in L[a, b], h\left(\frac{1}{2}\right) \neq 0$. Then for any partition

$$
0=\lambda_{0}<\lambda_{1}<\ldots<\lambda_{n-1}<\lambda_{n}=1, \quad \text { with } n \geq 1
$$

we have

$$
\begin{aligned}
& \frac{1}{2 h\left(\frac{1}{2}\right)} \sum_{j=0}^{n-1}\left(\lambda_{j+1}-\lambda_{j}\right) f\left(\left(1-\frac{\lambda_{j}+\lambda_{j+1}}{2}\right) a+\frac{\lambda_{j}+\lambda_{j+1}}{2} b\right) \\
& \quad \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& \quad \leq \sum_{j=0}^{n-1}\left(\lambda_{j+1}-\lambda_{j}\right) \times \\
& \quad \times\left[f\left(\left(1-\lambda_{j}\right) a+\lambda_{j} b\right)+f\left(\left(1-\lambda_{j+1}\right) a+\lambda_{j+1} b\right)\right] \int_{0}^{1} h(t) d x
\end{aligned}
$$

In papers [7] and [8], a case of h-concavity was not considered, but from the proofs it is clear that if f is h-concave, then inequalities in Theorems C and D hold with the reversed signs.

The topic of this paper is a counterpart of the Hermite-Hadamard inequality for a wider class of functions which covers h-convex functions.

Let φ be a continuous, strictly monotone function defined on the interval I. By M_{φ} we denote a quasi-arithmetic mean:

$$
M_{\varphi}(x, y ; t):=\varphi^{-1}(t \varphi(x)+(1-t) \varphi(y)), \quad x, y \in I, t \in[0,1]
$$

It is obvious that the power mean M_{p} corresponds to $\varphi(x)=x^{p}$ if $p \neq 0$ and to $\varphi(x)=\log x$ if $p=0$.

Definition 1.2. Let φ and ψ be two continuous, strictly monotone functions defined on intervals I and K respectively. Let $h: J \rightarrow \mathbb{R}$ be a nonnegative function, $\langle 0,1\rangle \subseteq J$ and let $f: I \rightarrow K$ such that $h(t) \psi(f(x))+h(1-$ $t) \psi(f(y)) \in \psi(K)$ for all $x, y \in I, t \in\langle 0,1\rangle$. We say that a function f is $M_{\varphi} M_{\psi}$-h-convex if

$$
\begin{equation*}
f\left(M_{\varphi}(x, y ; t)\right) \leq \psi^{-1}(h(t) \psi(f(x))+h(1-t) \psi(f(y))) \tag{1.6}
\end{equation*}
$$

for all $x, y \in I$ and all $t \in\langle 0,1\rangle$. If the sign of inequality is reversed in (1.6), then f is called $M_{\varphi} M_{\psi}$-h-concave.

Some particular cases of $M_{\varphi} M_{\psi}$-h-convex functions have been recently investigated in last ten years. If $h(t)=t$, then $M_{\varphi} M_{\psi}$ - h-convexity collapses to $M_{\varphi} M_{\psi}$-convexity which was described in [15]. Paper [1] consists several results about properties and the Jensen inequality for $M_{\varphi} M_{\psi}$ - h-convex functions where M_{φ}, M_{ψ} are an arithmetic mean (A), a geometric mean (G) or a harmonic mean (H). Furthermore, an $H A$-h-convexity or harmonic- h convexity was described in [3] and [19]. An $H G$ - h-convexity is investigated in [19] and an $A G$ - h-convexity or log-h-convexity in [20]. An $A M_{p}-h$-convexity or (h, p)-convexity was described in [11] while some properties of $M_{p} A$ - h convex functions were given in [6]. Properties of $M_{\varphi} A$ - h-convex functions were studied in [24].

In the second section, we prove the Hermite-Hadamard inequality for an $M_{\varphi} M_{\psi}-h$-convex function. The third section is devoted to different interpolation results related to the Hermite-Hadamard inequality. We end this paper with results related to a dyadic partition of interval $[a, b]$.

In this paper, if some inequality has a number (n) then its reverse version, i.e. an inequality with another sign is denoted by $(\mathrm{R} n)$.

2. The Hermite-Hadamard inequality

The following result gives a connection between the theory of h-convexity and the theory of $M_{\varphi} M_{\psi}$-h-convexity. As we will see below, it is the powerful tool used in many proofs.

Proposition 2.1. Let φ and ψ be strictly monotone continuous functions defined on intervals I and K respectively.
a) Let ψ be an increasing function. A function $f: I \rightarrow \mathbb{R}$ is $M_{\varphi} M_{\psi}-h$ convex ($M_{\varphi} M_{\psi}$-h-concave) if and only if $\psi \circ f \circ \varphi^{-1}$ is h-convex (h-concave).
b) Let ψ be an decreasing function. A function f is $M_{\varphi} M_{\psi}$-h-convex ($M_{\varphi} M_{\psi}$-h-concave) if and only if $\psi \circ f \circ \varphi^{-1}$ is h-concave (h-convex).

Proof. Let us suppose that ψ is increasing. For any $u, v \in \operatorname{Im}(\varphi)$ there exist $x, y \in I$ such that $\varphi(x)=u, \varphi(y)=v$. If f is $M_{\varphi} M_{\psi}-h$-convex and ψ is increasing, then for any $t \in\langle 0,1\rangle$

$$
\psi\left(f\left(\varphi^{-1}(t \varphi(x)+(1-t) \varphi(y))\right)\right) \leq h(t) \psi(f(x))+h(1-t) \psi(f(y))
$$

i.e.
$\left(\psi \circ f \circ \varphi^{-1}\right)(t u+(1-t) v) \leq h(t)\left(\psi \circ f \circ \varphi^{-1}\right)(u)+h(1-t)\left(\psi \circ f \circ \varphi^{-1}\right)(v)$.
So, $\psi \circ f \circ \varphi^{-1}$ is h-convex. Other cases are proved in a similar way.
Theorem 2.2 (The Hermite-Hadamard inequality for an $M_{\varphi} M_{\psi}$-h-convex function). Let h be a non-negative function defined on the interval $J,\langle 0,1\rangle \subseteq$ $J, h\left(\frac{1}{2}\right) \neq 0$. Let φ and ψ be strictly monotone continuous functions defined on intervals I and K respectively such that φ is differentiable on $[a, b] \subseteq I$.
a) If ψ is increasing, then for an $M_{\varphi} M_{\psi}$-h-convex function $f:[a, b] \rightarrow \mathbb{R}$ the following holds

$$
\begin{align*}
\frac{1}{2 h\left(\frac{1}{2}\right)}(\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{1}{2}\right)\right) & \leq \frac{1}{\varphi(b)-\varphi(a)} \int_{a}^{b} \psi(f(x)) \varphi^{\prime}(x) d x \\
& \leq[\psi(f(a))+\psi(f(b))] \int_{0}^{1} h(t) d t \tag{2.7}
\end{align*}
$$

provided that all integrals exist.
If f is $M_{\varphi} M_{\psi}$-h-concave, then (R2.7) holds.
b) If ψ is decreasing, then for an $M_{\varphi} M_{\psi}$-h-convex function f (R2.7) holds. If f is $M_{\varphi} M_{\psi}$-h-concave, then (2.7) holds.

Proof. Let us suppose that ψ is increasing and f is $M_{\varphi} M_{\psi}$ - h-convex. Then, by Proposition 2.1, a function $\psi \circ f \circ \varphi^{-1}$ is h-convex on $\varphi([a, b])$. If φ is increasing, then $\varphi([a, b])=[\varphi(a), \varphi(b)]$, while if φ is decreasing, then $\varphi([a, b])=[\varphi(b), \varphi(a)]$.

If φ is increasing, then applying (1.3) for a function $\psi \circ f \circ \varphi^{-1}$, we get

$$
\begin{aligned}
\frac{1}{2 h\left(\frac{1}{2}\right)} & \left(\psi \circ f \circ \varphi^{-1}\right)\left(\frac{\varphi(a)+\varphi(b)}{2}\right) \leq \frac{1}{\varphi(b)-\varphi(a)} \int_{\varphi(a)}^{\varphi(b)}\left(\psi \circ f \circ \varphi^{-1}\right)(x) d x \\
& \leq\left[\left(\psi \circ f \circ \varphi^{-1}\right)(\varphi(a))+\left(\psi \circ f \circ \varphi^{-1}\right)(\varphi(b))\right] \int_{0}^{1} h(t) d t
\end{aligned}
$$

After substitution $\varphi^{-1}(x)=u$, the integral in the middle term becomes
$\int_{a}^{b} \psi(f(x)) \varphi^{\prime}(x) d x$ and inequality (2.7) is proved.
If φ is decreasing, then the middle term is $\frac{1}{\varphi(a)-\varphi(b)} \int_{\varphi(b)}^{\varphi(a)}\left(\psi \circ f \circ \varphi^{-1}\right)(x) d x$ and after the same substitution we get $\frac{1}{\varphi(b)-\varphi(a)} \int_{a}^{b} \psi(f(x)) \varphi^{\prime}(x) d x$ and inequality (2.7) holds in this case.

All other cases are proved similarly.
Remark 2.3. Some particular cases of the above inequality are known. If $h(t)=t$, then the Hermite-Hadamard-type inequality for HG-convex, GGconvex, $M_{p} A$-convex, $A M_{p}$-convex, $M_{\varphi} A$-convex and $M_{\varphi} M_{\psi}$-convex functions can be found in [16], [13], [10], [5], [22] and [14] respectively.

The Hermite-Hadamard inequality for HA- h-convex, AG- h-convex, $A M_{r^{-}}$ h-convex functions are given in [19], [20], [11] respectively.

When h has the form $h(t)=h_{1}\left(t^{s}\right)$ for the fixed $s \in\langle 0,1]$, then results related to the Hermite-Hadamard inequality for h-convex functions are given in [18].

Note that Theorem 2.2 covers all the cases already mentioned. In the above-mentioned articles, the authors proved the Hermite-Hadamard type inequalities directly, ab ovo. But Proposition 2.1 allows us to prove such results much more elegantly using known results for h-convex functions.

3. Hermite-Hadamard type results with several nodes

In this section we direct our attention to Hermite-Hadamard-type results including two or more nodes. The section is finished with several results involving a dyadic partition of an interval. The following theorem is a generalization of Theorem C given in $M_{\varphi} M_{\psi^{-}}-$-convexity settings. In fact, this is a Hermite-Hadamard-type result which on the left-hand side includes values of a function in two points:

$$
\varphi^{-1}\left(\frac{(1-\lambda) \varphi(a)+(1+\lambda) \varphi(b)}{2}\right) \text { and } \varphi^{-1}\left(\frac{(2-\lambda) \varphi(a)+\lambda \varphi(b)}{2}\right)
$$

and which, in particular case, leads to the refinement of the Hermite-Hadamard inequality for an $M_{\varphi} M_{\psi}$-convex function.

Theorem 3.1. Let h be a non-negative function defined on the interval $J,\langle 0,1\rangle \subseteq J, h\left(\frac{1}{2}\right) \neq 0$. Let φ and ψ be strictly monotone continuous functions defined on intervals I and K respectively such that φ is differentiable on $[a, b] \subseteq I$. Let $f: I \rightarrow \mathbb{R}$.
(i) If ψ is increasing, then for an $M_{\varphi} M_{\psi}$-h-convex function f the following holds

$$
\Delta_{1} \leq \frac{1}{\varphi(b)-\varphi(a)} \int_{a}^{b} \psi(f(x)) \varphi^{\prime}(x) d x
$$

$$
\begin{equation*}
\leq \Delta_{2} \leq\{[h(1-\lambda)+\lambda] \psi(f(a))+[h(\lambda)+1-\lambda] \psi(f(b))\} \int_{0}^{1} h(t) d t \tag{3.8}
\end{equation*}
$$

where
$\Delta_{1}:=\frac{1}{2 h\left(\frac{1}{2}\right)}\left\{(1-\lambda)(\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{1-\lambda}{2}\right)\right)+\lambda(\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{2-\lambda}{2}\right)\right)\right\}$
$\Delta_{2}:=\left[\psi\left(f\left(M_{\varphi}(a, b ; 1-\lambda)\right)\right)+(1-\lambda) \psi(f(b))+\lambda \psi(f(a))\right] \int_{0}^{1} h(t) d t$,
provided that all integrals exist.
Furthermore, if $h(\lambda), h(1-\lambda) \neq 0$ and $(\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{1-\lambda}{2}\right)\right),(\psi \circ$ $f)\left(M_{\varphi}\left(a, b ; \frac{2-\lambda}{2}\right)\right) \geq 0$ for some $\lambda \in\langle 0,1\rangle$, then

$$
\begin{equation*}
\frac{1}{2 h\left(\frac{1}{2}\right)} \min \left\{\frac{1-\lambda}{h(1-\lambda)}, \frac{\lambda}{h(\lambda)}\right\}(\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{1}{2}\right)\right) \leq \Delta_{1} \tag{3.9}
\end{equation*}
$$

If f is $M_{\varphi} M_{\psi}$-h-concave, then (R3.8) and (R3.9) (with change min $\rightarrow \max$) hold.
(ii) If ψ is decreasing and f is $M_{\varphi} M_{\psi}$-h-convex, then (R3.8) and (R3.9) (with change $\min \rightarrow \max$) hold. If ψ is decreasing and f is $M_{\varphi} M_{\psi}$-h-concave, then (3.8) and (3.9) are valid.

Proof. Let us prove the case when ψ is increasing. Other cases are done in the similar manner. Denote $G:=\psi \circ f$. Since f is $M_{\varphi} M_{\psi}-h$-convex on I, then $G \circ \varphi^{-1}$ is h-convex on $\operatorname{Im}(\varphi)$ and applying Theorem C on function $G \circ \varphi^{-1}$, we get

$$
\begin{aligned}
\delta_{1} & =\frac{1}{2 h\left(\frac{1}{2}\right)}\left\{(1-\lambda)\left(G \circ \varphi^{-1}\right)\left(\frac{(1-\lambda) \varphi(a)+(1+\lambda) \varphi(b)}{2}\right)\right. \\
& \left.+\lambda\left(G \circ \varphi^{-1}\right)\left(\frac{(2-\lambda) \varphi(a)+\lambda \varphi(b)}{2}\right)\right\} \\
\delta_{2} & =\left[\left(G \circ \varphi^{-1}\right)((1-\lambda) \varphi(a)+\lambda \varphi(b))+(1-\lambda) G(b)+\lambda G(a)\right] \int_{0}^{1} h(t) d t .
\end{aligned}
$$

The second term in (1.4) becomes $\frac{1}{\varphi(b)-\varphi(a)} \int_{a}^{b} \psi(f(x)) \varphi^{\prime}(x) d x$ and the fourth term in (1.4) becomes

$$
\left[\psi\left(f\left(M_{\varphi}(a, b ; 1-\lambda)\right)\right)+(1-\lambda) \psi(f(b))+\lambda \psi(f(a))\right] \int_{0}^{1} h(t) d t
$$

Since

$$
\begin{aligned}
& \left(G \circ \varphi^{-1}\right)\left(\frac{(1-\lambda) \varphi(a)+(1+\lambda) \varphi(b)}{2}\right)=(\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{1-\lambda}{2}\right)\right) \\
& \left(G \circ \varphi^{-1}\right)\left(\frac{(2-\lambda) \varphi(a)+\lambda \varphi(b)}{2}\right)=(\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{2-\lambda}{2}\right)\right) \\
& \left(G \circ \varphi^{-1}\right)((1-\lambda) \varphi(a)+\lambda \varphi(b))=(\psi \circ f)\left(M_{\varphi}(a, b ; 1-\lambda)\right)
\end{aligned}
$$

we get (3.8).
Let us prove inequality (3.9). Let us rewrite δ_{1} on this way:

$$
\begin{aligned}
& 2 h\left(\frac{1}{2}\right) \delta_{1}=\frac{1-\lambda}{h(1-\lambda)} h(1-\lambda)\left(G \circ \varphi^{-1}\right)\left(\frac{(1-\lambda) \varphi(a)+(1+\lambda) \varphi(b)}{2}\right) \\
& \quad+\frac{\lambda}{h(\lambda)} h(\lambda)\left(G \circ \varphi^{-1}\right)\left(\frac{(2-\lambda) \varphi(a)+\lambda \varphi(b)}{2}\right) \\
& \quad \geq \min \left\{\frac{1-\lambda}{h(1-\lambda)}, \frac{\lambda}{h(\lambda)}\right\} \times \\
& \quad \times\left\{\left(h(1-\lambda)\left(G \circ \varphi^{-1}\right)\left(\frac{(1-\lambda) \varphi(a)+(1+\lambda) \varphi(b)}{2}\right)\right.\right. \\
& \left.\quad+h(\lambda)\left(G \circ \varphi^{-1}\right)\left(\frac{(2-\lambda) \varphi(a)+\lambda \varphi(b)}{2}\right)\right\} \\
& \quad \geq \min \left\{\frac{1-\lambda}{h(1-\lambda)}, \frac{\lambda}{h(\lambda)}\right\} \times \\
& \quad \times\left(G \circ \varphi^{-1}\right)\left[(1-\lambda) \frac{(1-\lambda) \varphi(a)+(\lambda+1) \varphi(b)}{2}+\lambda \frac{(2-\lambda) a+\lambda b}{2}\right] \\
& \quad=\min \left\{\frac{1-\lambda}{h(1-\lambda)}, \frac{\lambda}{h(\lambda)}\right\}\left(G \circ \varphi^{-1}\right)\left(\frac{\varphi(a)+\varphi(b)}{2}\right) \\
& \quad=\min \left\{\frac{1-\lambda}{h(1-\lambda)}, \frac{\lambda}{h(\lambda)}\right\}(\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{1}{2}\right)\right) .
\end{aligned}
$$

Corollary 3.2. Let the assumptions of Theorem 3.1 hold.
(i) If ψ is increasing, then for an $M_{\varphi} M_{\psi}$-h-convex function $f: I \rightarrow \mathbb{R}$ the following holds:

$$
\begin{align*}
\frac{1}{4 h^{2}\left(\frac{1}{2}\right)} & (\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{1}{2}\right)\right) \\
& \leq \frac{1}{4 h\left(\frac{1}{2}\right)}\left\{(\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{1}{4}\right)\right)+(\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{3}{4}\right)\right)\right\} \\
& \leq \frac{1}{\varphi(b)-\varphi(a)} \int_{a}^{b} \psi(f(x)) \varphi^{\prime}(x) d x \\
& \leq\left\{(\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{1}{2}\right)\right)+\frac{\psi(f(a))+\psi(f(b))}{2}\right\} \int_{0}^{1} h(t) d t \\
& \leq\left[\frac{1}{2}+h\left(\frac{1}{2}\right)\right][\psi(f(a))+\psi(f(b))] \int_{0}^{1} h(t) d t \tag{3.10}
\end{align*}
$$

provided that all integrals exist.
If f is $M_{\varphi} M_{\psi}$-h-concave, then (R3.10) holds.
(ii) If ψ is decreasing and f is $M_{\varphi} M_{\psi}$-h-convex, then (R3.10) holds. If ψ is decreasing and f is $M_{\varphi} M_{\psi}$-h-concave, then (3.10) is valid.

Proof. Firstly we consider the case when ψ is increasing and f is $M_{\varphi} M_{\psi^{-}}$ h-convex. The second and the third inequalities in (3.10) are simple consequences of Theorem 3.1 for $\lambda=\frac{1}{2}$. Let us prove the first and the fourth inequalities.

For an h-convex function F the following inequality holds:

$$
\begin{equation*}
F(A)+F(B) \geq \frac{1}{h\left(\frac{1}{2}\right)} F\left(\frac{A+B}{2}\right) \tag{3.11}
\end{equation*}
$$

Numbers $A:=\frac{\varphi(a)+3 \varphi(b)}{4}$ and $B:=\frac{3 \varphi(a)+\varphi(b)}{4}$ satisfy:

$$
\frac{A+B}{2}=\frac{\varphi(a)+\varphi(b)}{2}
$$

and applying (3.11) on function $F:=\psi \circ f \circ \varphi^{-1}$, we get

$$
(\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{1}{4}\right)\right)+(\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{3}{4}\right)\right) \geq \frac{1}{h\left(\frac{1}{2}\right)}(\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{1}{2}\right)\right)
$$

and the first inequality in (3.10) holds.
Let us prove the fourth inequality. From (3.11) we get

$$
(\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{1}{2}\right)\right) \leq h\left(\frac{1}{2}\right)[\psi(f(a))+\psi(f(b))]
$$

and hence

$$
(\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{1}{2}\right)\right)+\frac{\psi(f(a))+\psi(f(b))}{2} \leq\left[\frac{1}{2}+h\left(\frac{1}{2}\right)\right][\psi(f(a))+\psi(f(b))]
$$

and the fourth inequality in (3.10) is valid.
Corollary 3.3. Let h satisfies the assumptions of Theorem 3.1. Let f be a positive $G G$-h-convex function on $[a, b] \subseteq[0, \infty\rangle$. Then

$$
\begin{align*}
(f(\sqrt{a b}))^{\frac{1}{4 h^{2}\left(\frac{1}{2}\right)}} & \leq\left[f\left(\sqrt[4]{a^{3} b}\right) f\left(\sqrt[4]{a b^{3}}\right)\right]^{\frac{1}{4 h\left(\frac{1}{2}\right)}} \\
& \leq \exp \left(\frac{1}{\log b / a} \int_{a}^{b} \log f(x) \frac{d x}{x}\right) \\
& \leq(f(\sqrt{a b}) \sqrt{f(a) f(b)})^{H} \leq(\sqrt{f(a) f(b)})^{H\left[\frac{1}{2}+h\left(\frac{1}{2}\right)\right]}, \tag{3.12}
\end{align*}
$$

where $H=\int_{0}^{1} h(t) d t$ and provided that all integrals exist.
Proof. It is a consequence of Corollary 3.2 for $\psi=\varphi=\log$.
Remark 3.4. Inequality (3.12) for $h(t)=t$ i.e. for $G G$-convex or multiplicatively convex function can be found in [15, p.62]. It is worth to mention that every polynomial with non-negative coefficients is $G G$-convex, every real analytic function $f(x)=\sum a_{n} x^{n}$ with $a_{n} \geq 0$ is $G G$-convex on $[0, R\rangle$ where R is the radius of convergence. Also, the Gamma function is $G G$-convex.

Corollary 3.5. Let h satisfies the assumptions of Theorem 3.1. Let f be a function on $[a, b] \subseteq[0, \infty\rangle$ and $\varphi(x)=x^{p}, p \neq 0$.

If $p>0$ and f is $M_{\varphi} A$-h-convex, then

$$
\begin{aligned}
\frac{1}{4 h^{2}\left(\frac{1}{2}\right)} & f\left(\left(\frac{a^{p}+b^{p}}{2}\right)^{1 / p}\right) \\
& \leq \frac{1}{4 h\left(\frac{1}{2}\right)}\left\{f\left(\left(\frac{a^{p}+3 b^{p}}{4}\right)^{1 / p}\right)+f\left(\left(\frac{3 a^{p}+b^{p}}{4}\right)^{1 / p}\right)\right\} \\
& \leq \frac{p}{b^{p}-a^{p}} \int_{a}^{b} f(x) x^{p-1} d x \\
& \leq\left\{f\left(\left(\frac{a^{p}+b^{p}}{2}\right)^{1 / p}\right)+\frac{f(a)+f(b)}{2}\right\} \int_{0}^{1} h(t) d t \\
& \leq\left[\frac{1}{2}+h\left(\frac{1}{2}\right)\right][f(a)+f(b)] \int_{0}^{1} h(t) d t
\end{aligned}
$$

provided that all integrals exist.
If $p<0$ and f is $M_{\varphi} A$-h-convex, then (R3.13) holds.
Proof. It is a consequence of Corollary 3.2 for $\psi(x)=x, \varphi(x)=x^{p}$.
Remark 3.6. If $h(t)=t$ and $p=1$, then $4 h^{2}\left(\frac{1}{2}\right)=1, \frac{1}{2}+h\left(\frac{1}{2}\right)=1$ and inequality (3.13) becomes the refinement of the Hermite-Hadamard inequality (1.1).

The following Hermite-Hadamard-type result involves more than two nodes.
Theorem 3.7. Let h be a non-negative function defined on the interval $J,\langle 0,1\rangle \subseteq J, h\left(\frac{1}{2}\right) \neq 0$. Let φ and ψ be strictly monotone continuous functions defined on intervals I and K respectively such that φ is differentiable on $[a, b] \subseteq I$.
(i) If ψ is increasing, then for an $M_{\varphi} M_{\psi}$-h-convex function $f: I \rightarrow \mathbb{R}$ and for a partition

$$
0=\lambda_{0}<\lambda_{1}<\ldots<\lambda_{n-1}<\lambda_{n}=1, \quad \text { with } n \geq 1
$$

we have

$$
\begin{align*}
& \frac{1}{2 h\left(\frac{1}{2}\right)} \sum_{j=0}^{n-1}\left(\lambda_{j+1}-\lambda_{j}\right)(\psi \circ f)\left(M_{\varphi}\left(a, b ; 1-\frac{\lambda_{j}+\lambda_{j+1}}{2}\right)\right) \\
& \quad \leq \frac{1}{\varphi(b)-\varphi(a)} \int_{a}^{b} \psi(f(x)) \varphi^{\prime}(x) d x \\
& \quad \leq \sum_{j=0}^{n-1}\left(\lambda_{j+1}-\lambda_{j}\right)\left\{(\psi \circ f)\left(M_{\varphi}\left(a, b ; 1-\lambda_{j}\right)\right)\right. \\
& \left.\quad+(\psi \circ f)\left(M_{\varphi}\left(a, b ; 1-\lambda_{j+1}\right)\right)\right\} \int_{0}^{1} h(t) d t \tag{3.14}
\end{align*}
$$

provided that all integrals exist.
If f is $M_{\varphi} M_{\psi}$-h-concave, then (R3.14) holds.
(ii) If ψ is decreasing and f is $M_{\varphi} M_{\psi}$-h-convex, then (R3.14) holds. If ψ is decreasing and f is $M_{\varphi} M_{\psi}$-h-concave, then (3.14) is valid.

Proof. Let ψ be increasing and f be $M_{\varphi} M_{\psi}$-h-convex. Denote $G:=\psi \circ f$. Then a function $\psi \circ f \circ \varphi^{-1}$ is h-convex on $\varphi([a, b])$ and applying Theorem D on function $G \circ \varphi^{-1}$, we get

$$
\begin{align*}
\frac{1}{2 h\left(\frac{1}{2}\right)} & \sum_{j=0}^{n-1}\left(\lambda_{j+1}-\lambda_{j}\right) G\left(\varphi^{-1}\left(\left(1-\frac{\lambda_{j}+\lambda_{j+1}}{2}\right) \varphi(a)+\frac{\lambda_{j}+\lambda_{j+1}}{2} \varphi(b)\right)\right) \\
& \leq \frac{1}{\varphi(b)-\varphi(a)} \int_{a}^{b} G(x) \varphi^{\prime}(x) d x \\
& \leq \sum_{j=0}^{n-1}\left(\lambda_{j+1}-\lambda_{j}\right)\left\{G\left(\varphi^{-1}\left(\left(1-\lambda_{j}\right) \varphi(a)+\lambda_{j} \varphi(b)\right)\right)\right. \\
(3.15) & \left.+G\left(\varphi^{-1}\left(\left(1-\lambda_{j+1}\right) \varphi(a)+\lambda_{j+1} \varphi(b)\right)\right)\right\} \int_{0}^{1} h(t) d t . \tag{3.15}
\end{align*}
$$

Using the fact that $G\left(\varphi^{-1}\left(\left(1-\frac{\lambda_{j}+\lambda_{j+1}}{2}\right) \varphi(a)+\frac{\lambda_{j}+\lambda_{j+1}}{2} \varphi(b)\right)\right)=(\psi \circ$ $f)\left(M_{\varphi}\left(a, b ; 1-\frac{\lambda_{j}+\lambda_{j+1}}{2}\right)\right)$ etc, we get (3.14). Other cases are done in a similar manner.

If a partition is equidistant, then the series of inequalities in (3.14) can be extended. Namely, we have the following result.

Theorem 3.8. Let h be a non-negative function defined on the interval $J,\langle 0,1\rangle \subseteq J, h\left(\frac{1}{2}\right) \neq 0$. Let φ and ψ be strictly monotone continuous functions defined on intervals I and K respectively such that φ is differentiable on $[a, b] \subseteq I$. Let $f: I \rightarrow \mathbb{R}$. Let $n \geq 2$.
(i) If ψ is increasing, then for an $M_{\varphi} M_{\psi}$-h-convex function f the following inequalities hold

$$
\begin{aligned}
& \frac{1}{4 h^{2}\left(\frac{1}{2}\right)}(\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{1}{2}\right)\right) \\
& \quad \leq l(n) \leq \frac{1}{\varphi(b)-\varphi(a)} \int_{a}^{b} \psi(f(x)) \varphi^{\prime}(x) d x \leq L(n) \\
& \quad \leq \frac{1}{n}[\psi(f(a))+\psi(f(b))]\left\{1+2 \sum_{j=1}^{n-1} h\left(\frac{j}{n}\right)\right\} \int_{0}^{1} h(t) d t
\end{aligned}
$$

provided that all integrals exist and where

$$
\begin{aligned}
l(n) & =\frac{1}{2 n h\left(\frac{1}{2}\right)} \sum_{j=0}^{n-1}(\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{2 n-2 j-1}{2 n}\right)\right) \\
L(n) & =\frac{2}{n} \int_{0}^{1} h(t) d t\left\{\sum_{j=1}^{n-1}(\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{j}{n}\right)\right)+\frac{\psi(f(a))+\psi(f(b))}{2}\right\} .
\end{aligned}
$$

If f is $M_{\varphi} M_{\psi}$-h-concave, then (R3.16) holds.
(ii) If ψ is decreasing and f is $M_{\varphi} M_{\psi}$-h-convex, then (R3.16) holds. If ψ is decreasing and f is $M_{\varphi} M_{\psi}$-h-concave, then (3.16) is valid.

Proof. Let us suppose that ψ is increasing and f is $M_{\varphi} M_{\psi^{-}} h$-convex. The second and the third inequalities in (3.16) are simply consequences of Theorem 3.7 when we apply it on points: $\lambda_{j}=\frac{j}{n}$. Let us prove the first inequality. Putting in (3.11) $F=\psi \circ f \circ \varphi^{-1}=G \circ \varphi^{-1}$ and

$$
A=\frac{2 n-2 j-1}{2 n} \varphi(a)+\frac{2 j+1}{2 n} \varphi(b), \quad B=\frac{2 j+1}{2 n} \varphi(a)+\frac{2 n-2 j-1}{2 n} \varphi(b)
$$

and since $A+B=\varphi(a)+\varphi(b)$, we get

$$
\begin{aligned}
G\left(\varphi ^ { - 1 } \left(\frac{2 n-2 j-1}{2 n} \varphi(a)\right.\right. & \left.\left.+\frac{2 j+1}{2 n} \varphi(b)\right)\right) \\
& +G\left(\varphi^{-1}\left(\frac{2 j+1}{2 n} \varphi(a)+\frac{2 n-2 j-1}{2 n} \varphi(b)\right)\right) \\
& \geq \frac{1}{h\left(\frac{1}{2}\right)} G\left(\varphi^{-1}\left(\frac{\varphi(a)+\varphi(b)}{2}\right)\right)
\end{aligned}
$$

i.e.

$$
\begin{aligned}
G\left(M_{\varphi}\left(a, b ; \frac{2 n-2 j-1}{2 n}\right)\right) & +G\left(M_{\varphi}\left(a, b ; \frac{2 j+1}{2 n}\right)\right) \\
& \geq \frac{1}{h\left(\frac{1}{2}\right)} G\left(M_{\varphi}\left(a, b ; \frac{1}{2}\right)\right) .
\end{aligned}
$$

Let us write the sum $\sum_{j=0}^{n-1}(\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{2 n-2 j-1}{2}\right)\right)$ twice and add the addend indexed by j from the first sum with the addend indexed by $(n-j-1)$ from the second sum. Then we get

$$
\begin{aligned}
& 2 \sum_{j=0}^{n-1}(\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{2 n-2 j-1}{2 n}\right)\right) \\
& \quad=\sum_{j=0}^{n-1}(\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{2 n-2 j-1}{2 n}\right)\right)+(\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{2 j+1}{2 n}\right)\right) \\
& \quad \geq \sum_{j=0}^{n-1} \frac{1}{h\left(\frac{1}{2}\right)}(\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{1}{2}\right)\right) \\
& \quad=\frac{n}{h\left(\frac{1}{2}\right)}(\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{1}{2}\right)\right)
\end{aligned}
$$

and the first inequality in (3.16) follows.
In the proof of the fourth inequality in (3.16) we apply a definition of $M_{\varphi} M_{\psi}$-h-convexity on each addend in the sum and transform it:

$$
\begin{aligned}
\psi(f(a)) & +\psi(f(b))+2 \sum_{j=1}^{n-1}(\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{j}{n}\right)\right) \\
& \leq \psi(f(a))+\psi(f(b))+2 \sum_{j=1}^{n-1}\left(h\left(\frac{j}{n}\right) \psi(f(a))+h\left(\frac{n-j}{n}\right) \psi(f(b))\right) \\
& =[\psi(f(a))+\psi(f(b))]\left\{1+2 \sum_{j=1}^{n-1} h\left(\frac{j}{n}\right)\right\}
\end{aligned}
$$

and from this estimate the fourth inequality in (3.16) follows.
In the following theorem we consider a particular partition of interval $[0,1]$, so-called a dyadic partition. Let $m \geq 1$ be an integer and let

$$
\lambda_{j}:=\frac{j}{2^{m}}, \quad j=0,1,2, \ldots, 2^{m}
$$

Note that Corollary 3.2 contains result of this type for $m=1$. In literature, there are no similar results for h-convex functions. Therefore, we can not use Proposition 2.1 in the proof of the following theorem.

Theorem 3.9. Let h be a non-negative function defined on the interval $J,\langle 0,1\rangle \subseteq J, h\left(\frac{1}{2}\right) \neq 0$. Let φ and ψ be strictly monotone continuous functions defined on intervals I and K respectively such that φ is differentiable on $[a, b] \subseteq I$. Let $f: I \rightarrow \mathbb{R}$.
(i) If ψ is increasing, then for an $M_{\varphi} M_{\psi}$-h-convex function f and $m \in \mathbb{N}$ the following holds

$$
\begin{align*}
L\left(2^{m}\right) & \leq 8 h^{2}\left(\frac{1}{2}\right) \int_{0}^{1} h(t) d t \cdot l\left(2^{m}\right)+\frac{1}{2^{m}} \int_{0}^{1} h(t) d t\{\psi(f(a))+\psi(f(b)) \\
& -2 h\left(\frac{1}{2}\right) \psi\left(f\left(M_{\varphi}\left(a, b, \frac{2^{m+1}-1}{2^{m+1}}\right)\right)\right) \\
19) & \left.-2 h\left(\frac{1}{2}\right) \psi\left(f\left(M_{\varphi}\left(a, b, \frac{1}{2^{m+1}}\right)\right)\right)\right\} \tag{3.19}
\end{align*}
$$

where $l(n)$ and $L(n)$ are defined as in Theorem 3.8.
If f is $M_{\varphi} M_{\psi}$-h-concave, then (R3.17), (R3.18) and (R3.19) hold.
(ii) If ψ is decreasing and f is $M_{\varphi} M_{\psi}$-h-convex, then (R3.17), (R3.18) and (R3.19) hold. If ψ is decreasing and f is $M_{\varphi} M_{\psi}$-h-concave, then (3.17), (3.18) and (3.19) hold.

Proof. We prove the case when ψ is increasing and f is $M_{\varphi} M_{\psi}$-h-convex. We use notation: $F:=\psi \circ f \circ \varphi^{-1}, A:=\varphi(a)$ and $B:=\varphi(B)$.

From Theorem 3.8 we get:

$$
l\left(2^{m+1}\right)=\frac{1}{2^{m+2} h\left(\frac{1}{2}\right)} \sum_{j=0}^{2^{m+1}-1} F\left(\frac{\left(2^{m+2}-2 j-1\right) A+(2 j+1) B}{2^{m+2}}\right)
$$

Since

$$
\begin{aligned}
& \left\{0,1,2, \ldots 2^{m+1}-1\right\}=\left\{0,2,4, \ldots, 2^{m+1}-2\right\} \cup\left\{1,3,5, \ldots, 2^{m+1}-1\right\} \\
& =\left\{2 k: k=0,1, \ldots, 2^{m}-1\right\} \cup\left\{2 k+1: k=0,1, \ldots, 2^{m}-1\right\}
\end{aligned}
$$

we obtain

$$
\begin{aligned}
l\left(2^{m+1}\right) & =\frac{1}{2^{m+2} h\left(\frac{1}{2}\right)}\left\{\sum_{k=0}^{2^{m}-1} F\left(\frac{\left(2^{m+2}-4 k-1\right) A+(4 k+1) B}{2^{m+2}}\right)\right. \\
& \left.+\sum_{k=0}^{2^{m}-1} F\left(\frac{\left(2^{m+2}-4 k-3\right) A+(4 k+3) B}{2^{m+2}}\right)\right\} .
\end{aligned}
$$

Since F is h-convex, then $F(x)+F(y) \geq \frac{1}{h\left(\frac{1}{2}\right)} F\left(\frac{x+y}{2}\right)$. Putting in this inequality $x=\frac{\left(2^{m+2}-4 k-1\right) A+(4 k+1) B}{2^{m+2}}$ and $y=\frac{\left(2^{m+2}-4 k-3\right) A+(4 k+3) B}{2^{m+2}}$, we get that $l\left(2^{m+1}\right)$ is bounded from below as follows

$$
\begin{aligned}
l\left(2^{m+1}\right) & \geq \frac{1}{2^{m+2} h\left(\frac{1}{2}\right)} \sum_{k=0}^{2^{m}-1} \frac{1}{h\left(\frac{1}{2}\right)} F\left(\frac{\left(2^{m+1}-2 k-1\right) A+(2 k+1) B}{2^{m+1}}\right) \\
& =\frac{1}{2 h\left(\frac{1}{2}\right)} l\left(2^{m}\right)
\end{aligned}
$$

Hence (3.17) is proved.
Let us prove (3.18). Again, we split the sum in $L\left(2^{m+1}\right)$ into two sums: one with odd indices and the second sum with even indices.

$$
\begin{aligned}
& L\left(2^{m+1}\right)=\frac{1}{2^{m}} \int_{0}^{1} h(t) d t\left\{\frac{F(A)+F(B)}{2}+\sum_{k=1}^{2^{m}-1} F\left(\frac{\left(2^{m+1}-2 k\right) A+2 k B}{2^{m+1}}\right)\right. \\
& \left.\quad+\sum_{k=0}^{2^{m}-1} F\left(\frac{\left(2^{m+1}-2 k-1\right) A+(2 k+1) B}{2^{m+1}}\right)\right\} \\
& \quad=\frac{1}{2^{m}} \int_{0}^{1} h(t) d t\left\{\sum_{k=0}^{2^{m}-1} F\left(\frac{\left(2^{m+1}-2 k-1\right) A+(2 k+1) B}{2^{m+1}}\right)\right. \\
& \quad+\left[\frac{1}{2} \sum_{k=1}^{2^{m}-1} F\left(\frac{\left(2^{m+1}-2 k\right) A+2 k B}{2^{m+1}}\right)+\frac{F(A)}{2}\right] \\
& \left.\quad+\left[\frac{1}{2} \sum_{k=1}^{2^{m}-1} F\left(\frac{\left(2^{m+1}-2 k\right) A+2 k B}{2^{m+1}}\right)+\frac{F(B)}{2}\right]\right\} \\
& \quad=\frac{1}{2^{m}} \int_{0}^{1} h(t) d t\left\{\sum_{k=0}^{2^{m}-1} F\left(\frac{\left[\left(2^{m}-k\right) A+k B\right]+\left[\left(2^{m}-k-1\right) A+(k+1) B\right]}{2 \cdot 2^{m}}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{2} \sum_{k=0}^{2^{m}-1} F\left(\frac{\left(2^{m+1}-2 k\right) A+2 k B}{2^{m+1}}\right) \\
& \left.+\frac{1}{2} \sum_{r=0}^{2^{m}-1} F\left(\frac{\left(2^{m}-r-1\right) A+(r+1) B}{2^{m}}\right)\right\} \\
& \leq \frac{1}{2^{m}} \int_{0}^{1} h(t) d t\left\{\sum_{k=0}^{2^{m}-1} h\left(\frac{1}{2}\right) F\left(\frac{\left(2^{m}-k\right) A+k B}{2^{m}}\right)\right. \\
& +\sum_{k=0}^{2^{m}-1} h\left(\frac{1}{2}\right) F\left(\frac{\left(2^{m}-k-1\right) A+(k+1) B}{2^{m}}\right) \\
& \left.+\frac{1}{2} \sum_{k=0}^{2^{m}-1} F\left(\frac{\left(2^{m}-k\right) A+k B}{2^{m}}\right)+\frac{1}{2} \sum_{r=0}^{2^{m}-1} F\left(\frac{\left(2^{m}-r-1\right) A+(r+1) B}{2^{m}}\right)\right\} \\
& =\frac{1}{2^{m}} \int_{0}^{1} h(t) d t\left(\frac{1}{2}+h\left(\frac{1}{2}\right)\right) \times \\
& \times\left\{\sum_{k=0}^{2^{m}-1}\left[F\left(\frac{\left(2^{m}-k\right) A+k B}{2^{m}}\right)+F\left(\frac{\left(2^{m}-k-1\right) A+(k+1) B}{2^{m}}\right)\right]\right\} \\
& =\left(\frac{1}{2}+h\left(\frac{1}{2}\right)\right) L\left(2^{m}\right) .
\end{aligned}
$$

Let us prove (3.19). Note that for $k=1,2, \ldots, 2^{m}-1$

$$
\begin{aligned}
& \frac{\left(2^{m}-k\right) A+k B}{2^{m}} \\
& =\frac{1}{2}\left(\frac{\left(2^{m+1}-2 k+1\right) A+(2 k-1) B}{2^{m+1}}+\frac{\left(2^{m+1}-2 k-1\right) A+(2 k+1) B}{2^{m+1}}\right)
\end{aligned}
$$

Since F is h-convex, we get

$$
\begin{aligned}
& \sum_{k=1}^{2^{m}-1} F\left(\frac{\left(2^{m}-k\right) A+k B}{2^{m}}\right) \leq \sum_{k=1}^{2^{m}-1} h\left(\frac{1}{2}\right)\left\{F\left(\frac{\left(2^{m+1}-2 k+1\right) A+(2 k-1) B}{2^{m+1}}\right)\right. \\
& \left.\quad+F\left(\frac{\left(2^{m+1}-2 k-1\right) A+(2 k+1) B}{2^{m+1}}\right)\right\} \\
& \quad=h\left(\frac{1}{2}\right)\left[2 \sum_{j=0}^{2^{m}-1} F\left(\frac{\left(2^{m+1}-2 j-1\right) A+(2 j+1) B}{2^{m+1}}\right)\right. \\
& \left.\quad-F\left(\frac{\left(2^{m+1}-1\right) A+B}{2^{m+1}}\right)-F\left(\frac{A+\left(2^{m+1}-1\right) B}{2^{m+1}}\right)\right] .
\end{aligned}
$$

Adding on the both sides $\frac{F(A)+F(B)}{2}$ and using notations for l and L, we get

$$
\begin{aligned}
& \frac{2^{m-1}}{\int_{0}^{1} h(t) d t} L\left(2^{m}\right) \leq 2^{m+2} h^{2}\left(\frac{1}{2}\right) \cdot l\left(2^{m}\right)+\frac{F(A)+F(B)}{2} \\
& -h^{2}\left(\frac{1}{2}\right) F\left(\frac{\left(2^{m+1}-1\right) A+B}{2^{m+1}}\right)-h^{2}\left(\frac{1}{2}\right) F\left(\frac{A+\left(2^{m+1}-1\right) B}{2^{m+1}}\right)
\end{aligned}
$$

and (3.19) is proved.
If $h\left(\frac{1}{2}\right) \leq \frac{1}{2}$, then the previous Theorem gives a sequence of interpolations of the Hermite-Hadamard inequality.

Corollary 3.10. Suppose that the assumptions of Theorem 3.9 hold. Let $h\left(\frac{1}{2}\right) \leq \frac{1}{2}$.

If ψ is increasing and f is an $M_{\varphi} M_{\psi}$-h-convex integrable function such that $\psi \circ f \circ \varphi^{-1}$ is non-negative, then the following holds

$$
\begin{align*}
\frac{1}{4 h^{2}\left(\frac{1}{2}\right)} & (\psi \circ f)\left(M_{\varphi}\left(a, b ; \frac{1}{2}\right)\right) \leq l(2) \leq l\left(2^{2}\right) \leq \ldots \leq l\left(2^{m}\right) \leq \ldots \\
& \leq \frac{1}{\varphi(b)-\varphi(a)} \int_{a}^{b} \psi(f(x)) \varphi^{\prime}(x) d x \\
& \leq \ldots \leq L\left(2^{m}\right) \leq \ldots \leq L\left(2^{2}\right) \leq L(2) \\
& \leq\left[\frac{1}{2}+h\left(\frac{1}{2}\right)\right][\psi(f(a))+\psi(f(b))] \int_{0}^{1} h(t) d t \tag{3.20}
\end{align*}
$$

Additionally, if $\int_{0}^{1} h(t) d t \leq \frac{1}{2}$ and if $\psi \circ f \circ \varphi^{-1}$ is bounded on $\varphi([a, b])$, then

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(L\left(2^{m}\right)-l\left(2^{m}\right)\right)=0 \tag{3.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} l\left(2^{m}\right)=\frac{1}{\varphi(b)-\varphi(a)} \int_{a}^{b} \psi(f(x)) \varphi^{\prime}(x) d x=\lim _{m \rightarrow \infty} L\left(2^{m}\right) \tag{3.22}
\end{equation*}
$$

Proof. If $h\left(\frac{1}{2}\right) \leq \frac{1}{2}$, then $\frac{1}{2 h\left(\frac{1}{2}\right)} \geq 1$ and $\frac{1}{2}+h\left(\frac{1}{2}\right) \leq 1$ and from (3.17) and (3.18) we have that for any $m \geq 1$

$$
l\left(2^{m+1}\right) \geq l\left(2^{m}\right) \quad \text { and } \quad L\left(2^{m+1}\right) \leq L\left(2^{m}\right)
$$

Hence, applying Theorem 3.8, Corollary 3.2 and above inequalities, we get (3.20).

If $h\left(\frac{1}{2}\right) \leq \frac{1}{2}$ and $\int_{0}^{1} h(t) d t \leq \frac{1}{2}$, then $8 h^{2}\left(\frac{1}{2}\right) \int_{0}^{1} h(t) d t \leq 1$ and (3.21) follows from (3.19). The sequence $\left(l\left(2^{m}\right)\right)_{m}$ is a non-decreasing sequence,
bounded from above with $\frac{1}{\varphi(b)-\varphi(a)} \int_{a}^{b} \psi(f(x)) \varphi^{\prime}(x) d x$, so, it is convergent. Similarly, $\left(L\left(2^{m}\right)\right)_{m}$ is convergent and from (3.21) and from inequality

$$
l\left(2^{m}\right) \leq \frac{1}{\varphi(b)-\varphi(a)} \int_{a}^{b} \psi(f(x)) \varphi^{\prime}(x) d x \leq L\left(2^{m}\right)
$$

we get (3.22).
Under assumptions of Corollary 3.10 we conclude that the larger m makes $l\left(2^{m}\right)$ and $L\left(2^{m}\right)$ closer to the integral mean of $\psi \circ f \circ \varphi^{-1}$. The behavior of convex functions involving dyadic partition is studied in [12]. Here we extend those results to a more general function class.

Conclusion. In this paper, we study Hermite-Hadamard-type inequalities for $M_{\varphi} M_{\psi}$-h-convex functions. Until now we have found similar results only for particular subclasses of the class of $M_{\varphi} M_{\psi}$ - h-convex functions. The connection between h-convex function and $M_{\varphi} M_{\psi^{-}} h$-convex function which is described in Proposition 2.1 has a crucial role in the proofs and the use of it makes proofs more elegant. It would be interesting to see how this method impacts the study of other properties of $M_{\varphi} M_{\psi}$-h-convex functions.

References

[1] M. W. Alomari, Some properties of $h-M N$-convexity and Jensen's type inequalities, Journal of Interdisciplinary Mathematics, 22(8) (2019), 1349-1395.
[2] H. Bai, M. S. Saleem, W. Nazeer, M. S. Zahoor and T. Zhao, Hermite-Hadamard- and Jensen-type inequalities for interval $\left(h_{1}, h_{2}\right)$ nonconvex function, Journal of Mathematics, 2020, Article ID 3945384, https://doi.org/10.1155/2020/3945384.
[3] I. A. Baloch, M. de la Sen, and I. Iscan, Characterizations of classes of harmonic convex functions and applications, International Journal of Analysis and Applications, 17 (5) (2019), 722-733.
[4] M. Bombardelli and S. Varošanec, Properties of h-convex functions related to the Hermite-Hadamard-Féjer inequalities, Computers and Mathematics with Applications 58 (2009), 1869-1877.
[5] F. Chen and X. Liu, Refinements on the Hermite-Hadamard Inequalities for r Convex Functions, Journal of Applied Mathematics 2013, Article ID 978493, https://doi.org/10.1155/2013/978493.
[6] T. H. Dinh and K. T. B. Vo, Some inequalities for operator (p, h)-convex functions, Linear and Multilinear Algebra 66(3) (2018), 580-592.
[7] S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Proyecciones Journal of Mathematics 34(4) (2015), 323-341.
[8] S. S. Dragomir, n-Points inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Armenian J. Math. 8(1) (2016), 38-57.
[9] A. El Farrisi, Simple proof and refinement of Hermite-Hadamard inequality, J. Math. Inequal. 4(3) (2010), 365-369.
[10] Z. B. Fang and R. Shi, On the (p, h)-convex function and some integral inequalities, J. Inequal. Appl. 2014:45 (2014).
[11] L. V. Hap and N. V. Vinh, On some Hadamard-type inequalities for (h, r)-convex functions, Int. Journal of Math. Analysis 7(42) (2013), 2067-2075.
[12] M. Idris, A note on the refinement of Hermite-Hadamard inequality, J. Phys: Conf. Ser. 2106 012006. (2021) https://doi:10.1088/1742-6596/2106/1/012006.
[13] I. Iscan Some new Hermite-Hadamard type inequalities for geometrically convex functions, Mathematics and Statistics 1(2) (2013), 86-91.
[14] F. C. Mitroi, and C. I. Spiridon, Hermite-Hadamard type inequalities of convex functions with respect to a pair of quasi-arithmetic means, Math. Reports 14(64)(3) (2012), 291-295.
[15] C. Niculescu, and L. E. Persson, Convex functions and their applications, A Contemporary Approach, CMS Books in Mathematics, vol. 23, Springer, New York, 2006.
[16] M. A. Noor, K.I. Noor and M. U. Awan, Some characterizations of harmonically logconvex functions, Proc. Jangjeon Math. Soc. $17(1)$ (2014), 51-61.
[17] M. A. Noor, K.I. Noor and M. U. Awan, A new Hermite-Hadamard type inequality for h-convex functions, Creat. Math. Inform. 24(2) (2015), 191 - 197.
[18] M. A. Noor, K. I. Noor, and M. U. Awan, Integral inequalities for some new classes of convex functions, American Journal of Applied Mathematics 3 (2015), 1-5.
[19] M. A. Noor, K. I. Noor, M. U. Awan and S. Costache, Some integral inequalities for harmonically h-convex functions, U.P.B. Sci. Bull. Series A $77(1)(2015), 5-16$.
[20] M. A. Noor, F. Qi and M. U. Awan, Some Hermite-Hadamard type inequalities for log-h-convex functions, Analysis 33 (2013), 1-9.
[21] M. Z. Sarikaya, A. Saglam, and H. Yildirim, On some Hadamard-type inequalities for h-convex functions, J. Math. Inequal. 2(3) (2008), 335-341.
[22] S. Turhan, M. Kunt and I. Iscan, Hermite-Hadamard type inequalities for $M_{\varphi} A$-convex functions, Int. J. Math. Modelling and Computations 10(1) (2020), 57-75.
[23] S. Varošanec, On h-convexity, J. Math. Anal. Appl. 326 (2007), 303-311.
[24] S. Varošanec, $M_{\varphi} A$-h-convexity and Hermite-Hadamard type inequalities, International Journal of Analysis and Applications 20 (2022), 36.

Hermite-Hadamardova nejednakost za $M_{\varphi} M_{\psi}$-h-konveksne funkcije i odgovarajuće interpolacije

Sanja Varošanec

SAžEtak. U članku se promatra Hermite-Hadamardova nejednakost za $M_{\varphi} M_{\psi^{-}}$- -konveksne funkcije. Kao što je poznato, $M_{\varphi M_{\psi}}-h$-konveksnost generalizira nekoliko klasa funkcija kao što su harmonijski- h-konveksne funkcije, logaritamski h-konveksne, (h, p)-konveksne, $M_{p} A$ - h-konveksne, $M_{\varphi} M_{\psi}$ konveksne funkcije i druge. Dokazane su nejednakosti Hermite-Hadamardovog tipa koje uključuju dva i više čvorova, a posebna je pažnja posvećena dijadskoj particiji intervala i profinjenju nejednakosti koja se javlja u tom slučaju.

University of Zagreb
Faculty of Science, Department of Mathematics
Bijenička 30, 10000 Zagreb, Croatia
Email address: varosans@math.hr

