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A HUREWICZ-TYPE FORMULA FOR

ASYMPTOTIC-DIMENSION-LOWERING SYMMETRIC

QUASIMORPHISMS OF COUNTABLE APPROXIMATE

GROUPS

Vera Toni¢

Abstract. A well-known Hurewicz-type formula for asymptotic-
dimension-lowering group homomorphisms, due to A. Dranishnikov and
J. Smith, states that if f : G → H is a group homomorphism, then
asdimG ≤ asdimH + asdim (ker f). In this paper we establish a simi-
lar formula for certain quasimorphisms of countable approximate groups: if
(Ξ,Ξ∞) and (Λ,Λ∞) are countable approximate groups and if f : (Ξ,Ξ∞) →
(Λ,Λ∞) is a symmetric unital quasimorphism, we show that asdimΞ ≤
asdimΛ + asdim (f−1(D(f))), where D(f) is the defect set of f .

1. Introduction

In classical dimension theory in topology, there is a well-known theorem
stating that for a closed map f : X → Y between metric spaces it is true that
dimX ≤ dimY + dim f , where dim f is the supremum of the dimensions of
the �bers f−1(y), for all y ∈ Y . This theorem was proven independently by
K. Morita in 1956 and by K. Nagami in 1957, but it is known as Hurewicz
dimension-lowering mapping theorem, since the earliest version of it, for com-
pact metric spaces, was proven by W. Hurewicz in 1927, and then extended to
separable metric spaces by W. Hurewicz and H. Wallman in 1941 (according
to [10]).

This theorem has inspired analogous theorems developed in several direc-
tions, like the versions for asymptotic dimension of metric spaces and Lips-
chitz or coarsely Lipschitz maps, quoted here as Theorem 4.2 due to G. Bell
and A. Dranishnikov ([2]), and Theorem 4.3 due to N. Brodskiy, J. Dydak,
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M. Levin and A. Mitra ([4]). A version known as Hurewicz-type formula
for asymptotic dimension and group homomorphisms, quoted here as Theo-
rem 4.4 due to A. Dranishnikov and J. Smith ([9]), stating that for a group
homomorphism f : G → H, it is true that asdimG ≤ asdimH+asdim(ker f).

In [13], T. Hartnick and the author of this paper have proven a Hurewicz-
type formula, listed here as Theorem 4.5, stating that for a global morphism
of countable approximate groups f : (Ξ,Ξ∞) → (Λ,Λ∞), it is true that
asdimΞ ≤ asdimΛ + asdim [[ker f ]]c. Our goal in this paper is to show that a
similar formula works for a more general sort of function between countable
approximate groups. Namely, we prove in Theorem 4.6 that if f : (Ξ,Ξ∞) →
(Λ,Λ∞) is a symmetric unital quasimorphism between countable approximate
groups, then asdimΞ ≤ asdimΛ+asdim(f−1(D(f))), whereD(f) is the defect
set of the quasimorphism f .

We will de�ne approximate groups, as well as global morphisms and quasi-
morphisms between them in Section 3 of this paper, where we will also de�ne
asymptotic dimension of countable approximate groups. Before going into
Section 3, Section 2 will contain a short reminder about basic de�nitions of
asymptotic dimension on metric spaces, coarse equivalences and coarsely Lip-
schitz maps. In Section 4 we will list all versions of Hurewicz-type theorems
that are relevant for us, �nishing with the statement of our main theorem,
Theorem 4.6, which we will prove in the �nal section, Section 5.

2. Coarsely Lipschitz maps, coarse equivalence and asymptotic

dimension

In a metric space (X, d) we will use notation B(x, r) for an open ball, and
B(x, r) for a closed ball with center at the point x and with radius r > 0. If
A ⊆ X and R > 0, then NR(A) will refer to an open R-neighborhood of a set
A in (X, d). We will use the words function and map interchangeably. Our
main theorem refers to asymptotic dimension and in the proof of it we use
Theorem 4.3, which mentions coarsely Lipschitz1 maps. We will also need the
notion of coarse equivalence of metric spaces, so let us now review all of these
de�nitions.

Definition 2.1. Let (X, dX), (Y, dY ) be metric spaces and let f : X → Y
be a map. Let Φ−, Φ+ : [0,∞) → [0,∞) be non-decreasing functions with
limt→∞ Φi(t) = ∞, for i = −,+.

(i) If dY (f(x), f(x
′)) ≤ Φ+(dX(x, x′)) for all x, x′ ∈ X, then f is called

coarsely Lipschitz, and Φ+ is referred to as an upper control function
for f .

(ii) If Φ−(dX(x, x′)) ≤ dY (f(x), f(x
′)) ≤ Φ+(dX(x, x′)) for all x, x′ ∈ X,

then f is called a coarse embedding.

1The terminology we are using for maps is from [7], also used in [8].
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(iii) If f is a coarse embedding that is also coarsely surjective, i.e., if there
is an L > 0 such that NL(f(X)) = Y , then f is called a coarse equiv-
alence.

We say that two metric spaces are coarsely equivalent, and write (X, dX)
CE
≈

(Y, dY ), if there is a map between them that is a coarse equivalence. Coarsely
Lipschitz maps can be characterized without mentioning control functions (see
[7, Prop. 3.A.5]):

Lemma 2.2. A map f : X → Y between metric spaces is coarsely Lipschitz
if and only if for each t > 0, there exists s > 0 such that, if x, x′ ∈ X satisfy
dX(x, x′) ≤ t, then dY (f(x), f(x

′)) ≤ s.

Now let us give a de�nition of asymptotic dimension of a metric space,
for which several other equivalent de�nitions can be found in [3].

Definition 2.3. Let n ∈ N0. A metric space (X, d) has asymptotic
dimension asdimX = n if this n is the smallest number for which the following
is true: for every R > 0 there is a cover U of X such that:

1. U can be written as a union of n+1 collections U (0), . . . ,U (n) of subsets
of X, i.e., U =

⋃n
i=0 U (i), so that each of U (i) is R-disjoint, that is,

whenever U, V ∈ U (i) are such that U ̸= V , then d(U, V ) ≥ R, and
2. U is uniformly bounded, i.e., there exists D > 0 such that diamU ≤ D,

for all U ∈ U .
If there is no such n ∈ N0, we say that asdimX = ∞.

Among the properties of asdim (to be found in [3]), we particularly need
the following one:

Lemma 2.4. If (X, dX) and (Y, dY ) are coarsely equivalent metric spaces,
then asdimX = asdimY , i.e., asdim is a coarse invariant.

We will also need the notion of asdim being uniformly bounded on a
collection of spaces ([1, Section 2]):

Definition 2.5. Let Y := {Yα}α∈A be a collection of metric spaces and
let n ∈ N0. We say that the asymptotic dimension of Y is uniformly bounded

by n, and write asdim (Y)
u
≤ n, if for any R > 0 there exists D > 0 such that

for every α ∈ A there is a cover Uα of Yα which satis�es the two properties
from De�nition 2.3 with respect to R and D.

3. Approximate groups and quasimorphisms

Before introducing the needed de�nitions, we need some technical facts.
Let us recall that a metric space is proper if its closed balls are compact. In
what follows, we will need to choose �nice� metrics on countable groups, so
let us note that we always consider countable groups as discrete groups.
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Remark 3.1. Recall that on a countable group (which need not be �nitely
generated), one can always choose a left-invariant proper metric so that this
metric agrees with discrete topology on the group (see, for example, [9], Sec-
tion 1). Since this metric is proper, closed balls in it are compact and so they
are �nite sets, being in a discrete group. Therefore, in this setting, open balls
with bounded radii are also �nite sets.

Next we need to introduce some notation. Let A and B be subsets of a
group (G, ·). Then AB := {ab | a ∈ A, b ∈ B}, so A2 = AA = {ab | a, b ∈ A},
and Ak = Ak−1A, for k ∈ N≥2. We will use A−1 := {a−1 | a ∈ A}, and if
A = A−1, we say that A is symmetric. We mark the identity element of the
group G by e or eG, and if e ∈ A, we say that A is unital. Also if g ∈ G, then
gA = g · A := {ga | a ∈ A}, where we will make the operation sign visible if
it helps better understand what is written.

3.1. Approximate subgroups and approximate groups. Now let us introduce
the notion of an approximate subgroup of a group. The following de�nition
is due to T. Tao ([14]):

Definition 3.2 (Approximate subgroup of a group). Let G be a group
and let k ∈ N. A subset Λ ⊂ G is called a k-approximate subgroup of G if

(AG1) Λ = Λ−1 and e ∈ Λ, i.e., Λ is symmetric and unital, and
(AG2) there exists a �nite subset F ⊂ G such that Λ2 ⊂ ΛF and |F | = k.

We say that Λ is an approximate subgroup of G if it is a k-approximate
subgroup for some k ∈ N.

We will be interested in countably in�nite approximate subgroups, so
as long as the set F is �nite, the number of its elements is not going to
be important to us. The idea behind introducing approximate subgroups
is allowing for the result of the group operation between two elements of a
subset to be outside of this subset, but still �a �nite set away�. Since for
an approximate subgroup Λ of a group G there is the smallest subgroup
Λ∞ :=

⋃
k∈N Λk of G which contains Λ, this leads to the following de�nition:

Definition 3.3 (Approximate group). If Λ is an approximate subgroup
of a group G, then the group Λ∞ =

⋃
k∈N Λk, which is the smallest subgroup

of G containing Λ, is called the enveloping group of Λ. The pair (Λ,Λ∞) is
called an approximate group and the associated �ltered group (Λ∞, (Λk)k∈N)
is called a �ltered approximate group.

We say that an approximate group (Λ,Λ∞) is �nite if Λ is �nite (but
clearly Λ∞ need not be �nite). We say (Λ,Λ∞) is countable if Λ is countable,
which also implies that Λ∞ is countable.

Although the notation (Λ,Λ∞) may look a bit cumbersome, when we
need to introduce a �nice� metric on Λ in De�nition 3.10, we will �rst do so
on Λ∞, so we might as well mention Λ∞ next to Λ. On the other hand, when



HUREWICZ ASDIM-LOWERING SYMM. QUASIMORPH. OF APPROX. GROUPS 5

we de�ne the asymptotic dimension of an approximate group (see De�nition
3.11), we will write (just) asdimΛ.

Let us mention some examples and a non-example of approximate (sub)gro-
ups, taken from [8] and also mentioned in [13]:

Example 3.4 (A non-example of an approximate (sub)group). In the
group (Z,+) de�ne Λ := {2i | i ∈ Z} ∪ {0} ∪ {−2i | i ∈ Z}, which is clearly
a symmetric unital set. However, Λ is not an approximate subgroup of Z,
because Λ + Λ contains 2n + 2n+1 = 3 · 2n, for each n ∈ N, i.e., it contains
in�nitely many numbers which are not in Λ, and it is easy to see that there
is no �nite set F ⊆ Z such that Λ + Λ ⊆ Λ + F .

Example 3.5. LetG be a group. Then every subgroupH ofG is, trivially,
an approximate subgroup of G, and since H∞ = H, the pair (H,H) is an
approximate group, and so is (G,G). If F is a �nite symmetric unital subset
of G, then F is clearly an approximate subgroup of G, so (F, F∞) is an
approximate group. If Λ is an approximate subgroup of a group G, then Λk

is also an approximate subgroup of G, so (Λk,Λ∞) is an approximate group,
for all k ∈ N.

Example 3.6. Let BS(1, 2) = ⟨a, b | bab−1 = a2⟩, i.e., the Baumslag-
Solitar group of type (1, 2), and de�ne Λ := ⟨a⟩∪{b, b−1}. Then Λ is symmetric
and unital, and Λ∞ = BS(1, 2). Using the de�ning relation and (b−1ab)2 = a
it can be shown that Λ2 ⊆ Λ·{e, b, b−1, b−1a}, hence (Λ,Λ∞) is an approximate
group.

Example 3.7 (Cut-and-project construction, see Example 2.87 in [8])).
Let G,H be locally compact groups, and let projG : G×H → G and projH :
G×H → H be the canonical projections. Let Γ be a subgroup of G×H such
that the restriction projG |Γ is injective. Then for any relatively compact
symmetric identity neighborhood W in H, the set Λ(Γ,W ) := projG(Γ ∩
(G ×W )) is an approximate subgroup of G, so (Λ(Γ,W ), (Λ(Γ,W ))∞) is an
approximate group. Sets of the form Λ(Γ,W ) are referred to as cut-and-project
sets, because such a set arises from Γ by �rst cutting it with the �strip� G×W
in G×H, and then projecting down to G.

We will be interested in countable approximate groups, which we will
consider with a left-invariant proper metric on their enveloping groups. Note
that [9, Prop. 1.1] for countable groups gives us:

Proposition 3.8. If d and d′ are two left-invariant proper metrics on
the same countable group G, then the identity map between (G, d) and (G, d′)
is a coarse equivalence.

Moreover, by the �rst part of Lemma 3.1 of [8], we get:
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Lemma 3.9. Let G be a countable group, A ⊆ G be a subset and d and d′

be left-invariant proper metrics on G. Then the identity map from (A, d|A×A)
to (A, d′|A×A) is a coarse equivalence.

This allows us to introduce:

Definition 3.10. The canonical coarse class [G]c of a countable group
G is the coarse equivalence class of the metric space (G, d), where d is some
(hence any) left-invariant proper metric on G, that is, [G]c := [(G, d)]c =

{(X, d′) | (X, d′) is a metric space such that (X, d′)
CE
≈ (G, d)}.

Let (Λ,Λ∞) be a countable approximate group. Then for any subset A ⊆
Λ∞, we de�ne the cannonical coarse class of A by

[A]c := [(A, d|A×A)]c = {(X, d′) | (X, d′) is a metric space s.t. (X, d′)
CE
≈ (A, d|A×A)},

where d is some (hence any) left-invariant proper metric on the countable
group Λ∞. In particular, this de�nes the canonical coarse class of Λ, [Λ]c :=
[(Λ, d|Λ×Λ)]c.

Also note that the canonical coarse class of Λ is independent of the am-
bient group used to de�ne it, because if Λ is an approximate subgroup of a
countable group G and d is a left-invariant proper metric on G, then d|Λ∞×Λ∞

is a left-invariant proper metric on Λ∞ (which is contained in G), and hence
[Λ]c = [(Λ, d|Λ×Λ)]c. Moreover, since the restriction of a left-invariant proper
metric on Λ∞ is still a proper metric on Λ, the class [Λ]c admits a represen-
tative which is a proper metric space.

Let us note here that for any left-invariant proper metric d on Λ∞, we
will refer to the metric d|Λ×Λ as a canonical metric on Λ.

Now we de�ne the asymptotic dimension of a countable group, and of a
countable approximate group, as follows:

Definition 3.11. For a countable group G, its asymptotic dimension is
de�ned as

asdimG := asdim (G, d),

where d is any left-invariant proper metric on G. We can also de�ne
asdim ([G]c) := asdim (G, d), so asdimG = asdim (G, d) = asdim ([G]c).

For a countable approximate group (Λ,Λ∞), its asymptotic dimension is
de�ned as

asdimΛ := asdim (Λ, d|Λ×Λ),

where d is any left-invariant proper metric on Λ∞. We can also de�ne
asdim ([Λ]c) := asdim (Λ, d|Λ×Λ). More generally, if A is any subset of Λ∞,
then the asymptotic dimension of A is de�ned as asdimA := asdim(A, d|A×A) =
asdim [A]c.
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3.2. Global morphisms and quasimorphisms of approximate groups. Before
giving the announced de�nitions, here are some basic notions we need. If G
and H are groups, A is a symmetric subset of G and f : A → H is a (set-
theoretic) function, we say that f is symmetric if f(a−1) = f(a)−1. If A is
unital, we say that f : A → H is unital if f(eG) = eH . If for all a1, a2 ∈ A
such that a1a2 ∈ A we have f(a1a2) = f(a1)f(a2), we call such f a partial
homomorphism.

We would now like to introduce functions between groups which, as
S. Ulam suggested in [15], do not satisfy a strict rule like f(xy) = f(x)f(y),
but instead satisfy such a rule �approximately�. So instead of demanding, for
f : G → H, that f(xy) = f(x)f(y), or, equivalently, f(y)−1f(x)−1f(xy) = eH
for all x, y ∈ G, we loosen this requirement as follows:

Definition 3.12. Let G and H be groups. A (set-theoretic) function
f : G → H is called a quasimorphism if its defect set

(3.1) D(f) := {f(y)−1f(x)−1f(xy) | x, y ∈ G}
is �nite.

Remark 3.13. What we call a quasimorphism in De�nition 3.12 should be
called a left-quasimorphism, while D(f) should be called a left-defect set, and
we should de�ne a right-quasimorphism by demanding that the right-defect
set

(3.2) D∗(f) := {f(x)f(y)f(xy)−1 | x, y ∈ G}
be �nite. However, it was proved by N. Heuer in [12, Prop. 2.3] that the two
notions coincide.

Remark 3.14. We are using the name quasimorphism in De�nition 3.12
following [8]. In other sources, like [11] or [12], the same kind of function is
called a quasihomomorphism, while the name quasimorphism is reserved for
this kind of function which has R or Z as its codomain.

Remark 3.15 (Properties of defect set). Since

f(xy) = f(x)f(y)f(y)−1f(x)−1f(xy),

the set D(f) has the following properties:

(3.3) f(xy) ∈ f(x)f(y)D(f) and f(x)f(y) ∈ f(xy)D(f)−1 for all x, y ∈ G.

For the particular case when H is a countable group with a left-invariant
proper metric d, we have, according to Proposition 2.47 in [8]:

Proposition 3.16. If G is a group and H is a countable group with a
left-invariant proper metric d, then a function f : G → H is a quasimorphism
if and only if there exists a constant C ≥ 0 such that

d(f(xy), f(x)f(y)) ≤ C, for all x, y ∈ G.
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Example 3.17 (Examples of quasimorphisms). Basic examples of quasi-
morphisms between groups are homomorphisms, as well as all functions f :
G → H between groups that have �nite image. As noted in [12], di�erent
quasimorphisms can be constructed as follows: if H is a group containing an
in�nite cyclic subgroup C and τ : Z → H is a homomorphism with τ(Z) = C,
then for any quasimorphism ϕ : G → Z, the composition τ ◦ ϕ : G → H is a
quasimorphism.

The so-called counting quasimorphisms introduced by Brooks ([5]), from
non-abelian free groups Fr of rank r to Z, are examples of symmetric quasi-
morphisms, which, roughly speaking, assign to a reduced word from Fr \ {e}
the di�erence between the number of appearances of some smaller word in
it minus the number of appearances of the inverse of this smaller word (see,
for example, [8, Example B.43] for more details). More facts on real-valued
quasimorphisms can be found in [8, Appendix B.5].

More examples and properties of quasimorphisms with discrete groups
as codomains can be found in [11], while [6] covers a more general theory of
so-called Ulam quasimorphisms.

We see in Example 3.17 that there are symmetric quasimorphisms, and
more about the importance of these can be found in Appendix B.5 of [8]. If
the codomain of a quasimorphism f is Z or R, then f being symmetric implies
that f is also unital, since from f(e) = f(e−1) = c and f(e−1) = f(e)−1 = −c
one gets 2c = 0, so c = 0. But even if the codomain is not Z nor R, we
can still make a quasimorphism unital using the following proposition ([12,
Proposition 2.7]):

Proposition 3.18. Let f : G → H be a quasimorphism. Then the map
f : G → H de�ned by f |G\{eG} = f and f(eG) = eH is also a quasimorphism.

Now let us move on to global morphisms and quasimorphisms between
approximate groups.

Definition 3.19. A global morphism f : (Ξ,Ξ∞) → (Λ,Λ∞) between
approximate groups is a group homomorphism f : Ξ∞ → Λ∞ which restricts
to partial homomorphisms fk := f |Ξk : Ξk → Λk for each k ∈ N, that is, for
all ξ1, ξ2 ∈ Ξk which satisfy ξ1ξ2 ∈ Ξk we have fk(ξ1ξ2) = fk(ξ1)fk(ξ2).

Note that for a global morphism f(Ξ) ⊂ Λ implies that f(Ξk) = f(Ξ)k ⊂
Λk, for all k ∈ N≥2.

Definition 3.20. Let (Ξ,Ξ∞) and (Λ,Λ∞) be approximate groups. A
function of pairs f : (Ξ,Ξ∞) → (Λ,Λ∞) is called a global quasimorphism (or
simply a quasimorphism) if f : Ξ∞ → Λ∞ is a quasimorphism in the sense
of De�nition 3.12.

Clearly a global morphism of approximate groups is an example of a
symmetric and unital quasimorphism between them.
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From De�nition 3.20 we see that a quasimorphism f of approximate
groups satis�es f(Ξ) ⊂ Λ, and we use notation f1 := f |Ξ : Ξ → Λ, as we do
for global morphisms. But f(Ξ2) need not be contained in Λ2, since f(ξ1ξ2)
is not equal to f(ξ1)f(ξ2) in general. However, since D(f) is �nite, from (3.3)
we get that f(Ξ2) ⊂ ΛM , for some M ∈ N≥2. Let us also note that, if we wish
for f(Ξ) to be equal to Λ, we will need this quasimorphism f to be symmetric
and unital:

Proposition 3.21. Let f : G → H be a quasimorphism between groups.
If Ξ is an approximate subgroup of G and f is symmetric and unital, then
f(Ξ) is an approximate subgroup of H.

Proof. First note that the image of a symmetric unital set under a
symmetric unital map is symmetric and unital, so f(Ξ) is symmetric and
unital. Secondly, since there exists a �nite set F ⊂ G such that Ξ2 ⊂ ΞF , by
(3.3) we have

f(Ξ2) ⊂ f(ΞF ) ⊂ f(Ξ)f(F )D(f).

This, together with another application of (3.3), yields

f(Ξ)2 ⊂ f(Ξ2)D(f)−1 ⊂ f(ΞF )D(f)−1 ⊂ f(Ξ)f(F )D(f)D(f)−1,

and the set f(F )D(f)D(f)−1 is �nite.

4. The Hurewicz dimension-lowering mapping theorem and some

existing generalizations

The classical Hurewicz theorem for dimension-lowering maps (e.g. [10,
Theorem 4.3.4], due to Morita and Nagami), states:

Theorem 4.1 (Hurewicz dimension-lowering theorem). Let X and Y be
metrizable spaces and let f : X → Y be a closed map. Then

dimX ≤ dimY + dim f, where dim f := sup {dim(f−1(y)) | y ∈ Y }.

A version of this theorem for asymptotic dimension, due to Bell and
Dranishnikov (see [2, Theorem 1] or [3, Theorem 29]), states:

Theorem 4.2 (Asymptotic Hurewicz mapping theorem, �rst version).
Let f : X → Y be a Lipschitz map from a geodesic metric space X to a metric
space Y . If for every r > 0 the collection Yr := {f−1(B(y, r))}y∈Y satis�es

asdim (Yr)
u
≤ n, then asdimX ≤ asdimY + n.

A generalization of this result, due to Brodskiy, Dydak, Levin and Mitra
([4, Theorem 1.2]), states:

Theorem 4.3 (Asymptotic Hurewicz mapping theorem, second version).
Let h : X → Y be a coarsely Lipschitz map between metric spaces. If for every

r > 0 the collection Yr := {h−1(B(y, r))}y∈Y satis�es asdim (Yr)
u
≤ n, then

asdimX ≤ asdimY + n.
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The original statement of this theorem talks about a �large scale uniform�
map, but this is precisely what is called a coarsely Lipschitz map in this
paper in De�nition 2.1. Also, instead of asdimX ≤ asdimY + n, in [4,
Theorem 1.2] it says asdimX ≤ asdimY + asdimh, where asdimh is de�ned
as sup {asdimA | A ⊆ X and asdim(h(A)) = 0}. However, the property

asdim(Yr)
u
≤ n can be shown to be equivalent to the map h having an n-

dimensional control function (terminology of [4]), and by Corollary 4.10 of
[4], this is equivalent to asdimh ≤ n.

We follow with the Hurewicz-type formulas for homomorphisms of groups,
and global morphisms of countable approximate groups. First of all, in ([9,
Theorem 2.3]) Dranishnikov and Smith prove:

Theorem 4.4 (Hurewicz-type formula for homomorphism of groups). Let
f : G → H be a homomorphism of groups. Then

asdimG ≤ asdimH + asdim (ker f).

Then in [13, Theorem 1.4], relying on Theorem 4.3, it is proven:

Theorem 4.5 (Hurewicz type formula for morphism of countable approx-
imate groups). Let (Ξ,Ξ∞), (Λ,Λ∞) be countable approximate groups and let
f : (Ξ,Ξ∞) → (Λ,Λ∞) be a global morphism. Then

asdimΞ ≤ asdimΛ + asdim ([[ker(f)]]c),

where [[ker(f)]]c is the coarse kernel of f .

The coarse kernel [[ker(f)]]c of a global morphism f is de�ned in [13,
Remark 4.12] as

[[ker(f)]]c := [Ξ2∩ker f ]c = [Ξ3∩ker f ]c = · · · = [Ξk∩ker f ]c = [Ξk+1∩ker f ]c =...,

where these equalities are shown to be true by [13, Corollary 4.11].

As announced in the Introduction, in this paper in Section 5 we are go-
ing to prove a Hurewicz-type formula for certain kind of quasimorphisms of
countable approximate groups, namely:

Theorem 4.6. Let (Ξ,Ξ∞) and (Λ,Λ∞) be countable approximate groups,
and let f : (Ξ,Ξ∞) → (Λ,Λ∞) be a symmetric unital quasimorphism. Then

asdimΞ ≤ asdimΛ + asdim (f−1(D(f))),

where D(f) is the defect set of f .

5. Proof of the main theorem

In the proof of Theorem 4.6 we intend to invoke Theorem 4.3, for which we
need to make sure that f1 = f |Ξ : Ξ → Λ is a coarsely Lipschitz map. The next
lemma will show this. This statement is, in fact, true for all quasimorphisms
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between countable approximate groups (see [8], Lemma 3.8), but we will prove
it only for symmetric quasimorphisms.

Lemma 5.1. Let (Ξ,Ξ∞) and (Λ,Λ∞) be countable approximate groups,
and let f : (Ξ,Ξ∞) → (Λ,Λ∞) be a symmetric quasimorphism. Then f1 =
f |Ξ : Ξ → Λ is coarsely Lipschitz, with respect to the canonical metrics on Ξ
and Λ.

Proof. First we �x a left-invariant proper metric d on Ξ∞ and d′ on Λ∞.
According to Lemma 2.2, it su�ces to show that, for any t > 0 there exists an
s > 0 such that whenever ξ, η ∈ Ξ satisfy d(ξ, η) ≤ t, then d′(f1(ξ), f1(η)) ≤ s.

Let us take a random t > 0 and �x it. Since the metric d is proper, the
closed ball B(eΞ, t) = {ξ ∈ Ξ∞ | d(eΞ, ξ) ≤ t} is compact so it is �nite, by
Remark 3.1. Thus f(B(eΞ, t)) is a �nite subset of Λ∞, so there exists an
S > 0 (depending on t) such that

f(B(eΞ, t)) ⊂ B′(eΛ, S) := {λ ∈ Λ∞ | d′(eΛ, λ) ≤ S}.(5.4)

Now let ξ, η ∈ Ξ be any two elements with d(ξ, η) ≤ t. Since d′ is left-invariant
and f is symmetric, it follows that

d′(f1(ξ), f1(η)) = d′(f1(η)
−1f1(ξ), eΛ) = d′(f1(η

−1)f1(ξ), eΛ)

≤ d′(f1(η
−1)f1(ξ), f(η

−1ξ)) + d′(f(η−1ξ), eΛ).(5.5)

Note that from d(ξ, η) = d(η−1ξ, eΞ) ≤ t we have that η−1ξ is in B(eΞ, t),
so by (5.4)

d′(f(η−1ξ), eΛ) ≤ S.(5.6)

On the other hand, d′(f1(η
−1)f1(ξ), f(η

−1ξ)) = d′(f(η−1ξ)−1f1(η
−1)f1(ξ), eΛ).

But by (3.3) we have f(η−1ξ)−1f1(η
−1)f1(ξ) ∈ D(f)−1, and the defect set

D(f) is �nite, so if we de�ne

C := max
λ∈D(f)−1

d′(λ, eΛ),

then

(5.7) d′(f1(η
−1)f1(ξ), f(η

−1ξ)) = d′(f(η−1ξ)−1f1(η
−1)f1(ξ), eΛ) ≤ C.

Finally (5.5), (5.6) and (5.7) yield d′(f1(ξ), f1(η)) ≤ C+S, which �nishes the
proof.

Now we can prove the main theorem:

Proof of Theorem 4.6. By Proposition 3.21, we may assume that
f |Ξ = f1 : Ξ → Λ is surjective, since we can replace Λ with the approx-
imate subgroup f(Ξ), if needed. Also note that eΛ ∈ D(f), because f is
unital.

Let us �x left-invariant proper metrics d on Ξ∞ and d′ on Λ∞. For an
r ∈ R>0 we denote by B(ξ, r) and B′(λ, r) open balls with radius r in (Ξ∞, d)
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and (Λ∞, d′), respectively, centered at ξ ∈ Ξ∞, λ ∈ Λ∞. Note that by left-
invariance of d′ we have B′(λ, r) = λB′(eΛ, r), for all λ ∈ Λ∞.

Now by Lemma 5.1, the restriction f1 : Ξ → Λ is coarsely Lipschitz.
Because of Theorem 4.3, it su�ces to show that for every r > 0, the collection

Yr := {f−1
1 (B′(λ, r) ∩ Λ)}λ∈Λ

satis�es the inequality

(5.8) asdim (Yr)
u
≤ asdim f−1(D(f)).

First, let us �x a random r > 0. Then, for every λ ∈ Λ pick a ξλ ∈
f−1
1 (λ) ⊂ Ξ, so f(ξλ) = f1(ξλ) = λ. Furthermore, note that

(λB′(eΛ, r)) ∩ Λ ⊂ λ ·
(
B′(eΛ, r) ∩ Λ2

)
,

since if z = λb = λ̃, for some b ∈ B′(eΛ, r), λ̃ ∈ Λ, then b = λ−1λ̃ ∈ Λ2. Now,
for any λ ∈ Λ,

f−1
1 (B′(λ, r) ∩ Λ) = f−1

1 ((λB′(eΛ, r)) ∩ Λ)

⊂ f−1
1 (λ · (B′(eΛ, r) ∩ Λ2))

= f−1
1

(
f1 (ξλ) · (B′(eΛ, r) ∩ Λ2)

)
⊂ f−1

(
f(ξλ) ·

(
B′(eΛ, r) ∩ Λ2

))
= {z ∈ Ξ∞ | f(z) ∈ f(ξλ) · (B′(eΛ, r) ∩ Λ2)}
= {z ∈ Ξ∞ | f(ξλ)−1f(z) ∈ B′(eΛ, r) ∩ Λ2}
= {z ∈ Ξ∞ | f(ξ−1

λ )f(z) ∈ B′(eΛ, r) ∩ Λ2}.(5.9)

By (3.3) we know that f(ξ−1
λ )f(z) ∈ f(ξ−1

λ z)D(f)−1, so f(ξ−1
λ )f(z) =

f(ξ−1
λ z) · d−1 for some d ∈ D(f). Thus

f(ξ−1
λ )f(z) ∈ B′(eΛ, r) ∩ Λ2 ⇒ f(ξ−1

λ z) · d−1 ∈ B′(eΛ, r) ∩ Λ2

so

f(ξ−1
λ z) ∈

(
B′(eΛ, r) ∩ Λ2

)
D(f) ⇒ ξ−1

λ z ∈ f−1
((
B′(eΛ, r) ∩ Λ2

)
D(f)

)
⇒ z ∈ ξλ · f−1

((
B′(eΛ, r) ∩ Λ2

)
D(f)

)
.(5.10)

Therefore, from (5.9) and (5.10) we get

f−1
1 (B′(λ, r) ∩ Λ) ⊂ {z ∈ Ξ∞ | f(ξ−1

λ )f(z) ∈ B′(eΛ, r) ∩ Λ2}
⊂ ξλ · f−1

((
B′(eΛ, r) ∩ Λ2

)
D(f)

)
.(5.11)

Since left-multiplication by ξλ yields an isometry of Ξ∞, we have reduced
proving (5.8) to proving that

(5.12) asdim f−1
((
B′(eΛ, r) ∩ Λ2

)
D(f)

)
≤ asdim f−1(D(f)),

for every r > 0.
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Now by properness of d′ the ball B′(eΛ, r) is �nite, so both B′(eΛ, r) ∩ Λ
and B′(eΛ, r) ∩ Λ2 are �nite and we may write, using eΛ ∈ Λ ⊂ Λ2,

B′(eΛ, r) ∩ Λ = {λ1 = eΛ, λ2, . . . , λN}
⊂ {λ1, . . . , λN , λN+1, λN+2, . . . , λN+k} = B′(eΛ, r) ∩ Λ2.

We also know that D(f) is �nite, so using eΛ ∈ D(f) we may write D(f) =
{d1 = eΛ, d2, . . . , dm}. It follows that(
B′(eΛ, r) ∩ Λ2

)
D(f) = {λi | i = 1, . . . , N + k} ∪ {λidj | i = 1, . . . , N + k, j = 2, . . . ,m}.

Therefore

f−1
((
B′(eΛ, r) ∩ Λ2

)
D(f)

)
=

=

(
N⊔
i=1

f−1(λi)

)
⊔

(
k⊔

i=1

f−1(λN+i)

)
⊔

 ⊔
i=1,...,N+k
j=2,...,m

f−1(λidj)

 .

Since f |Ξ = f1 : Ξ → Λ is surjective, we know that f−1(λi) are non-empty
for i = 1, . . . , N , though some of the other preimages in this union may be
empty. For the sake of the argument, let us assume that all of the preimages
mentioned in this union are non-empty (if some were empty, we could just
remove them from further calculations). Let us take

ξi ∈ Ξ∞ so that f(ξi) = λi, for i = 1, . . . , N + k, and

ξij ∈ Ξ∞ so that f(ξij) = λidj , for i = 1, . . . , N + k and j = 2, . . . ,m.

De�ne

R := max ({d(eΞ, ξi) | i = 1, . . . , N + k} ∪ {d(eΞ, ξij) | i = 1, . . . , N + k, j = 2, . . . ,m})
(5.13)

and note that, by left-invariance of the metric d, we get the same R in (5.13)
if we replace each ξi and ξij by its inverse.

Now we claim that all f−1(λi) and all f−1(λidj), for i = 1, . . . , N + k
and j = 2, . . . ,m, are contained in NR(f

−1(D(f))). To see this, take any
ηi ∈ f−1(λi), for i = 1, . . . , N +k, and note that using (3.3) and the fact that
f is symmetric we have

f(ηiξ
−1
i ) ∈ f(ηi)f(ξ

−1
i )D(f) = f(ηi)f(ξi)

−1D(f) = λiλ
−1
i D(f) = D(f),

so ηiξ
−1
i is contained in f−1(D(f)). Analogously, for any ηij ∈ f−1(λidj), for

i = 1, . . . , N + k, j = 2, . . . ,m, we have

f(ηijξ
−1
ij ) ∈ f(ηij)f(ξ

−1
ij )D(f) = f(ηij)f(ξij)

−1D(f) = λidj(λidj)
−1D(f) = D(f),

so ηijξ
−1
ij is contained in f−1(D(f)). Therefore by (5.13)

d(ηi, f
−1(D(f))) ≤ d(ηi, ηiξ

−1
i ) ≤ R, for i = 1, . . . , N + k, and

d(ηij , f
−1(D(f))) ≤ d(ηij , ηijξ

−1
ij ) ≤ R, for i = 1, . . . , N + k, j = 2, . . . ,m,



14 V. TONI�

which �nishes the proof that all f−1(λi) and all f−1(λidj) are contained in
NR(f

−1(D(f))).
Thus the entire f−1

((
B′(eΛ, r) ∩ Λ2

)
D(f)

)
is contained inNR(f

−1(D(f))),
so

asdim f−1
((
B′(eΛ, r) ∩ Λ2

)
D(f)

)
≤ asdim NR(f

−1(D(f)))

and NR(f
−1(D(f))) has the same asymptotic dimension as f−1(D(f)), which

establishes (5.12) and �nishes the proof.

Remark 5.2. Since asymptotic dimension is a coarse invariant, we could
replace f−1(D(f)) in the statement of Theorem 4.6 by its coarse class [f−1(D(f))]c.

Acknowledgements.

The author whishes to thank the referee for careful reading of the man-
uscript and detailed, helpful comments. This work was supported by the
University of Rijeka project uniri-iskusni-prirod-23-66.

References

[1] G. Bell and A. Dranishnikov, On asymptotic dimension of groups, Algebr. Geom.
Topol., 1:57�71, 2001.

[2] G. Bell and A. Dranishnikov, A Hurewicz-type theorem for asymptotic dimension and
applications to geometric group theory, Trans. Amer. Math. Soc., 358(11):4749�4764,
2006.

[3] G. Bell and A. Dranishnikov, Asymptotic dimension, Topology Appl., 155(12):1265�
1296, 2008.

[4] N. Brodskiy, J. Dydak, M. Levin and A. Mitra, A Hurewicz theorem for the Assouad-
Nagata dimension, J. Lond. Math. Soc. (2), 77(3):741�756, 2008.

[5] N. Brooks, Some remarks on bounded cohomology, Riemann surfaces and related top-
ics: Proceedings of the 1978 Stony Brook Conference, (97) 53�63, 1981.

[6] M. Brandenbursky and M. Verbitsky, Non-commutative Barge-Ghys quasimorphisms,
Preprint, 2023. arxiv.org/abs/2212.12958

[7] Y. Cornulier and P. de la Harpe, Metric geometry of locally compact groups, volume
25 of EMS Tracts in Mathematics, European Mathematical Society (EMS), Zürich,
2016.

[8] M. Cordes, T. Hartnick and V. Toni¢, Foundations of geometric approximate group
theory, Preprint, 2024. https://arxiv.org/pdf/2012.15303.pdf.

[9] A. Dranishnikov and J. Smith, Asymptotic dimension of discrete groups, Fund. Math.,
189(1):27�34, 2006.

[10] R. Engelking, Theory of dimensions �nite and in�nite, volume 10 of Sigma Series in
Pure Mathematics, Heldermann Verlag, Berlin, 1995.

[11] K. Fujiwara and M. Kapovich, On quasihomomorphisms with noncommutative targets,
Geom. Funct. Anal. 26(2):478�519, 2016.

[12] N. Heuer, Low-dimensional bounded cohomology and extensions of groups, Math.
Scand. 126(1):5�31, 2020.

[13] T. Hartnick and V. Toni¢, Hurewicz and Dranishnikov-Smith theorems for asymptotic
dimension of countable approximate groups, Topology Appl. (349):108905, 2024.

[14] T. Tao, Product set estimates for non-commutative groups, Combinatorica, 28(5):547�
594, 2008.

[15] S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and
Applied Mathematics, no. 8. Interscience Publishers, New York-London, 1960.



HUREWICZ ASDIM-LOWERING SYMM. QUASIMORPH. OF APPROX. GROUPS15

Formula Hurewiczevog tipa za simetri£ne kvazimor�zme koji

sniºavaju asimptoti£ku dimenziju na prebrojivim aproksimativnim

grupama

Vera Toni¢

Saºetak. Poznata formula Hurewiczevog tipa za homomor-

�zme me�u grupama koji sniºavaju asimptoti£ku dimenziju, koju

su dokazali A. Dranishnikov i J. Smith, kaºe da kada je f : G → H

homomor�zam me�u grupama, tada vrijedi asdimG ≤ asdimH+

asdim (ker f). U ovom £lanku dokazujemo sli£nu formulu za

odre�ene kvazimor�zme prebrojivih aproksimativnih grupa: ako

su (Ξ,Ξ∞) i (Λ,Λ∞) prebrojive aproksimativne grupe, te ako je

f : (Ξ,Ξ∞) → (Λ,Λ∞) simetri£ni kvazimor�zam koji £uva je-

dinicu, tada vrijedi asdimΞ ≤ asdimΛ+ asdim(f−1(D(f))), gdje

je D(f) skup defekata za f .
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