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COMPUTABLE SUBCONTINUA OF CIRCULARLY
CHAINABLE CONTINUA

David Tarandek

Abstract. This paper explores, in computable metric spaces, circu-

larly chainable continua which are not chainable. Given such a contin-

uum K, if we endow it with semicomputability, its computability follows.
Conditions under which semicomputability implies computability, typically

topological, are extensively studied in the literature. When these condi-

tions are not satisfied, it is natural to explore approximate approaches. In
this article we investigate specific computable subcontinua of K. The main

result establishes that, given two points on a semicomputable, circularly

chainable, but non-chainable continuum K, one can approximate them
by computable points such that there exists a computable subcontinuum

connecting these approximations. As a consequence, given disjoint com-

putably enumerable open sets U and V intersected by K, the intersection
of K with the complement of their union necessarily contains a computable

point, provided that this intersection is totally disconnected.

1. Introduction

A compact set K ⊆ R is said to be computable if it can be effectively
approximated by finitely many rational points with any given precision. A
compact set K ⊆ R is said to be semicomputable if there is a computable
function f : R → R such that the set of its zeros equals K.

In R the following implication holds:

K computable =⇒ K semicomputable.

This also holds in more general ambient spaces such as Rn, computable
metric spaces and computable topological spaces.
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The converse,

K semicomputable =⇒ K computable,

does not hold. A well known counterexample from Miller [Mil02] goes like
this: Let γ ∈ [0, 1] be a left-computable, but not computable, real number.
Then the segment [γ, 1] is semicomputable, but not computable.

But, for each ϵ > 0 there exists γϵ ∈ ⟨γ, γ + ϵ⟩ such that [γϵ, 1] is com-
putable. In that way we inner approximate the semicomputable set [γ, 1] with
the computable sets [γϵ, 1].

This example ilustrates two common approaches in computable analysis.

1. Which topological conditions render a semicomputable set K computable?
2. If this conditions aren’t met, under which conditions can K be inner ap-

proximated by a desired class of computable sets?

Examples 1. • A semicomputable set homeomorphic to the circle
S1 ⊆ R2 is computable [Mil02].

• Specker [Spe59] shows that there exists a computable function f : R →
R which has zeros, but none of them are computable. It follows that
K = f−1({0}) is a semicomputable set that contains no computable
points. In particular, K has no nonempty computable subsets.

• It is shown that K from the previous example is homeomorphic to the
Cantor set. It is compact, but not connected. However, (K × [0, 1]) ∪
([0, 1] × K) ⊆ R2 is a compact and connected set, i.e., a continuum,
which is semicomputable and has no nonempty computable subsets.

• There exists a contractible, locally contractible semicomputable curve
in R2 which cannot be inner approximated by computable continua
[Kih12].

Topological properties have a significant impact on the behavior of sets
with respect to approaches 1. and 2. Among other objects, arcs and topo-
logical circles are often studied in the literature, as well as their respective
generalizations, chainable and circularly chainable continua. Here are some
important results concerning approach 1.

[Ilj09] : In a computable metric space, every semicomputable circularly chain-
able continuum that is not chainable is computable.

[ČIV19] : The same holds in a computable topological space. Also, every
semicomputable continuum K that is chainable from a to b, where a
and b are computable points, is computable.

[IS18] : A semicomputable manifold with a semicomputable boundary is com-
putable.

We now present several important results regarding approach 2.

[IP18] : If A is a semicomputable arc in a computable metric space with
endpoints a and b, then for every ϵ > 0 there exist computable points
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a′ and b′ such that d(a, a′) < ϵ, d(b, b′) < ϵ, and a computable arc A′

whose endpoints are a′ and b′ such that A′ ⊆ A.
[ČHI21] : The same holds in a computable topological space. The same

conclusion holds for semicomputable chainable continua under the ad-
ditional assumption of decomposability.

[IJ24] : The same holds even without the decomposability assumption, if K
is a semicomputable continuum chainable from a to b, where a is a
computable point.

The first goal is to prove that, given a circularly chainable, but not chain-
able, continuum K in a computable metric space and two distinct points
a, b ∈ K we can find computable points a′, b′ ∈ K arbitrarily close to a and
b and a computable subcontinuum L of K chainable from a′ to b′. Some
similarities and differences are highlighted when contrasting this result with
the approach 2.

The second goal is to generalize a well known result stated in Pour-El,
Richards [PR89]:

Theorem 1. Computable Intermediate Value Theorem. A com-
putable function f : [0, 1] → R such that f(0) < 0, f(1) > 0 has a computable
zero.

Some generalizations have been studied in [IP18], with the most promi-
nent result being:

Theorem 2. Let (X, d, α) be a computable metric space and let U and
V be disjoint c.e. open sets in X. Let S = X \ (U ∪ V ). Suppose K is a
continuum in X chainable from a to b, where a ∈ U and b ∈ V . Suppose K
is a computable set and K ∩ S is totally disconnected. Then K ∩ S contains
a computable point.

We plan to show that the modification of Theorem 2 holds, where K is
a circularly chainable, but not chainable, continuum which intersects both U
and V.

Our choice of setting is a computable metric space. The result [AH23,
Theorem 3.4], shows that every semicomputable set S in a computable topo-
logical space can be effectively embedded into the Hilbert cube and therefore
computable topological spaces do not lead to a more general result.

2. Preliminaries

Here we state some basic definitions and facts about computable metric
spaces. See [Ilj09; IS18; IP18; Wei00; Wei93].

Let k ∈ N \ {0}. A function f : Nk → Q is said to be computable if there
exist computable (i.e., recursive) functions a, b, c : Nk → N such that

f(x) = (−1)c(x) · a(x)

b(x) + 1
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for each x ∈ Nk. A function f : Nk → R is said to be computable if there
exists a computable function F : Nk+1 → Q such that

|f(x)− F (x, i)| < 2−i

for all x ∈ Nk, i ∈ N.
Let (X, d) be a metric space, and let α be a sequence in X such that α(N)

is a dense set in (X, d). We say that (X, d, α) is a computable metric space if
the function

(i, j) 7→ d(αi, αj) : N2 → R
is computable.

Let (X, d, α) be a computable metric space. A point x ∈ X is said to be
computable in (X, d, α) if there exists a computable function f : N → N such
that

d
(
x, αf(k)

)
< 2−k

for all k ∈ N.
We fix computable functions

(j, i) 7→ (j)i : N2 → N and j 7→ j : N → N

such that

{((j)0, (j)1, . . . , (j)j) | j ∈ N}
is the set of all nonempty finite sequences in N.

For j ∈ N, let
[j] := {(j)0, . . . , (j)j}.

Then each nonempty finite subset of N is equal to [j] for some j ∈ N.
If (X, d, α) is a computable metric space, i ∈ N, and q ∈ Q with q > 0,

we say that B(αi, q) is a rational open ball in this space. Here, for x ∈ X and
r > 0, we denote by B(x, r) = {y ∈ X : d(x, y) < r} the open ball of radius r
centered at x. Let τ1, τ2 : N → N be fixed computable functions such that

{(τ1(i), τ2(i)) | i ∈ N} = N2,

and let q : N → Q be a fixed computable function whose image is the set of all
positive rational numbers. Let (λi)i∈N be the sequence of points in X defined
by λi = ατ1(i), and let (ρi)i∈N be the sequence of rational numbers defined by
ρi = qτ2(i). For i ∈ N, we define

Ii = B(λi, ρi), Îi = B(λi, ρi).

Note that {Ii | i ∈ N} is the set of all rational open balls in (X, d, α). There-
fore, the sequence (Ii)i∈N represents an effective enumeration of all rational
open balls.

Let (X, d, α) be a computable metric space. Any finite union of rational
open balls in this space is said to be a rational open set. For j ∈ N we define
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Jj =
⋃
i∈[j]

Ii, Ĵj =
⋃
i∈[j]

Îi.

Then (Jj) is an effective enumeration of all rational open sets in (X, d, α).
Let (X, d, α) be a computable metric space. For every j ∈ N, we define

fdiam(j) := diam{λu | u ∈ [j]}+ 2max{ρu | u ∈ [j]},
and call it the formal diameter of Jj . This is formally a N → R function of
j, not of Jj . We define a function fmesh : N → R by

fmesh(l) = max
0≤p≤l

fdiam
(
(l)p

)
.

It is straightforward to conclude that the functions fdiam and fmesh are com-
putable [Ilj09, Proposition 2, Proposition 13].

Let (X, d) be a metric space, A,B ⊆ X, and ε > 0. We say that A and
B are ε-close, and write A ≈ε B, if

(∀a ∈ A)(∃b ∈ B) (d(a, b) < ε) and (∀b ∈ B)(∃a ∈ A) (d(a, b) < ε) .

If A and B are nonempty compact sets in (X, d), the number

inf{ε > 0 | A ≈ε B}
is called the Hausdorff distance from A to B, and it is denoted by dH(A,B).

It is not hard to check that, for ε > 0, we have dH(A,B) < ε if and only
if A ≈ε B.

Definition 1. Let (X, d, α) be a computable metric space. We say that
a compact set S ⊆ X is computable in (X, d, α) if either S = ∅ or there exists
a computable function f : N → N such that

S ≈2−k {αi | i ∈ [f(k)]}, for all k ∈ N.

Definition 2. Let (X, d, α) be a computable metric space.

(i) A closed set S ⊆ X is said to be computably enumerable (c.e.) in
(X, d, α) if the set

{i ∈ N | Ii ∩ S ̸= ∅}
is computably enumerable.

(ii) A compact set S ⊆ X is said to be semicomputable in (X, d, α) if the set

{j ∈ N | S ⊆ Jj}
is computably enumerable.

(iii) An open set U ⊆ X is said to be computably enumerable open in (X, d, α)
if

U =
⋃
i∈A

Ii,

for some c.e. subset A of N.
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It is not hard to see that these definitions do not depend on the particular
choices of the functions q, τ1, τ2, and j 7→ [j].

For compact sets K in (X, d, α) we have the following important equiva-
lence from [Ilj13, Proposition 2.6]:

K is computable ⇐⇒ K is semicomputable and c.e.

We state the following basic facts about computable functions of type
Nk → Nn and Nk → R:

Proposition 1. (i) (Projection theorem) Let T ⊆ Nk+n be a com-
putably enumerable set. Then the set

S = {x ∈ Nk | ∃y ∈ Nn : (x, y) ∈ T}

is computably enumerable.
(ii) (Single-valuedness theorem) Suppose T ⊆ Nk+n, S1 ⊆ Nk, and

S2 ⊆ Nn are computably enumerable sets such that for each x ∈ S1 there
exists y ∈ S2 with (x, y) ∈ T . Then there exists a partial computable
(partial recursive) function f : S1 → Nn such that f(S1) ⊆ S2 and

(x, f(x)) ∈ T for each x ∈ S1.

(iii) If S ⊆ Nn is a computably enumerable set and f : Nk → Nn is a
computable function, then the set f−1(S) is computably enumerable.

Proposition 2. (i) If f, g : Nk → R are computable functions, then
f + g and f − g are computable.

(ii) If f, g : Nk → R are computable functions, then the set

{x ∈ Nk | f(x) > g(x)}

is computably enumerable.

For m ∈ N, let Nm = {0, . . . ,m}. For n ≥ 1, let

Nn
m = {(x1, . . . , xn) | x1, . . . , xn ∈ Nm}.

We say that a function Φ : Nk → P(Nn) is effectively finitely valued or
e.f.v. if the function Φ : Nk+n → N defined by

Φ(x, y) = χΦ(x)(y), x ∈ Nk, y ∈ Nn,

is computable (where χS : Nn → N denotes the characteristic function of
S ⊆ Nn) and if there exists a computable function φ : Nk → N such that

Φ(x) ⊆ Nn
φ(x), ∀x ∈ Nk.

In the following proposition, we state some elementary facts about e.f.v. func-
tions.
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(a) A chain in (X, d) (b) A circular chain in (X, d)

Proposition 3. (i) Let Φ : Nk → P(Nn) and Ψ : Nn → P(Nm) be
e.f.v. functions. Let Λ : Nk → P(Nm) be defined by:

Λ(x) =
⋃

z∈Φ(x)

Ψ(z), ∀x ∈ Nk.

Then Λ is an e.f.v. function.
(ii) Let Φ : Nk → P(Nn) be e.f.v. and let T ⊆ Nn be c.e. Then the set

S = {x ∈ Nk | Φ(x) ⊆ T}
is c.e.

(iii) If Φ,Ψ : Nk → P(Nn) are e.f.v. functions, then the sets

{x ∈ Nk | Φ(x) = Ψ(x)} and {x ∈ Nk | Φ(x) ⊆ Ψ(x)}
are computable.

3. Chains and circular chains

Definition 3. Let X be a set. Let C = (C0, . . . , Cm) be a finite sequence
of subsets of X. Then C is said to be a chain in X if for all i, j ∈ {0, . . .m}

|i− j| > 1 ⇐⇒ Ci ∩ Cj = ∅.
The finite sequence C is said to be a circular chain in X if for all i, j ∈
{0, . . .m}

1 < |i− j| < m ⇐⇒ Ci ∩ Cj = ∅.
If for all i, j ∈ {0, . . .m}

|i− j| > 1 =⇒ Ci ∩ Cj = ∅,
we call C a quasi-chain.

For a (circular) chain C = (C0, . . . , Cm) and a natural number i ∈ {0, . . . ,m}
we call Ci a link of C. If C is a chain, C0 and Cm are called end links.

If A = (A0, . . . , An) is a finite sequence of bounded nonempty subsets of
(X, d), we define
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mesh(A) = max
0≤i≤n

diam(Ai).

Let C be a (circular) chain and ϵ > 0. If mesh(C) < ϵ, we say that C is an
ϵ-(circular) chain.

A (circular) chain in some metric space (X, d) is said to be an open (cir-
cular) chain in (X, d) if each of its links is an open set in (X, d). Similarly,
a (circular) chain (X, d) is said to be a compact (circular) chain in (X, d) if
each of its links is a compact set in (X, d).

Remark 1. Let X be a set. We note the following:

• Let C = (C0, . . . , Cm) be a circular chain. Each link of C is a nonempty
set by definition.

• If C0 is a nonempty set in X, the sequence (C0) is both a chain and a
circular chain. The same holds for the sequence (C0, C0).

• Let m ≥ 2 and C = (C0, . . . , Cm) be a chain in X. We claim: if i ̸= j,
then Ci ̸= Cj . Namely, if |i− j| > 1, then Ci and Cj are disjont. Since
they are nonempty, we have Ci ̸= Cj . If |i − j| = 1, we can without
loss of generality assume i < j. Then i ∈ {0, . . .m − 1}, j = i + 1.
Then we suppose the opposite, Ci = Ci+1. If i < m− 1, then the link
Ci+2 intersects the link Ci+1 = Ci, so we have derived a contradiction.
If i = m − 1, then the link Cm−2 intersects Cm−1 = Cm, again a
contradiction.

• For nonempty intersecting sets C0 and C1 in X, the sequence (C0, C1)
is both a chain and a circular chain. It easily follows that collections
of two-link chains and two-link circular chains coincide.

• Let C = (C0, . . . , Cm) be a sequence of sets in X with m ≥ 2. Then C
can not be both a chain and a circular chain. If C is a chain, then C0

and Cm are disjoint, so C is not a circular chain.
• Let C = (C0, . . . , Cm) be a chain in X. If m < 2, then we say that C

is trivial. If m ≥ 2, we say that C is non-trivial. To summarize: non-
trivial chains cannot be circular, and their links are mutually distinct
sets.

Definition 4. Suppose X is a set, S ⊆ X and C = (C0, . . . , Cm) a finite
sequence of subsets of X. We say that C covers S if S ⊆ C0 ∪ · · · ∪ Cm. If
a, b ∈ X, we say that C covers S from a to b if C covers S and a ∈ C0, b ∈ Cm.

Let (K, d) be a continuum. We say that (K, d) is a (circularly) chainable
continuum if for each ϵ > 0 there exists an open ϵ-(circular) chain (C0, . . . , Cm)
in (K, d) which covers K. If a, b ∈ K, we say that (K, d) is a continuum
chainable from a to b if for each ϵ > 0 there exists an open ϵ-chain (C0, . . . , Cm)
in (K, d) which covers K from a to b.

We state a well-known fact from [IP18]:
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Figure 2. Closed topological sine curve

Proposition 4. [IP18, Proposition 3.3, Proposition 6.11] Let (X, d) be a
continuum. Then (X, d) is (circularly) chainable if and only if for each ϵ > 0
there exists a compact (circular) ϵ-chain in (X, d) which covers X.

Remark 2. Let (X, d) be a continuum. If X is not chainable, then there
exists ϵ0 > 0 such that no compact ϵ0-chain covers X. Using the Lebesgue
number lemma, it can easily be seen that then no open ϵ0-chain covers X. If
this is the case, we will say that X is not ϵ0-chainable.

Examples 2. Here we list some well-known examples (see [Nad92; CV77;
Ilj09; Bur59]):

• Closed interval [0, 1] is chainable from 0 to 1, but not circularly chain-
able.

• An arc is a topological space homeomorphic to [0, 1]. If A is an arc
and f : [0, 1] → A a homeomorphism, then a = f(0) and b = f(1) are
called its endpoints. A is then chainable from a to b.

• The unit circle S1 in R2 is circularly chainable, but not chainable.
• Topological circles (homeomorphic images of S1) are also circularly
chainable, but not chainable.

• Closed topological sine curve. Let

K =

{
(x, sin

(
1

x

)
) : 0 < x ≤ 1

}
∪ {(0, y) : y ∈ [−1, 1]} .

Let a = (0,−1), b = (0, 0), c = (1, sin 1). K is a continuum chainable
from a to c. K is not chainable from b to c.

• The Warsaw circle. Let K be the curve from the previous example.
We define W = K∪({0}×[−2,−1])∪([0, 1]×{−2})∪({1}×[−2, sin 1]).
W is a circularly chainable continuum.

• Let us consider the double topological sine curve:
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Figure 3. The Warsaw circle

Figure 4. Double topological sine curve

D =

{
(x, sin

(∣∣∣∣ 1x
∣∣∣∣)) | x ∈ [−1, 1] \ {0}

}
∪ {(0, y) : y ∈ [−1, 1]} ,

and now we add some line segments to construct a closed curve

D′ = D ∪ ({−1} × [−2, sin 1]) ∪ ([−1, 1]× {−2})
∪ ({1} × [−2, sin 1]).

Then D′ is a circularly chainable continuum, but it is not chain-
able. Notice that if a = (0, 0) and b = (1, sin 1) there doesn’t exist a
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subcontinuum of D′ chainable from a to b. Furthermore, if subcon-
tinuum L of D′ is chainable from a = (0, 0) to some b ∈ D′, then
b ∈ {0} × [−1, 1].

• A continuum is called decomposable if K = K1∪K2, where K1 and K2

are proper subcontinua of K. A continuum is called indecomposable
if it is not decomposable. A decomposable continuum K is said to be
2-indecomposable if there exist no subcontinua K1,K2 and K3 of K
such that K = K1 ∪K2 ∪K3 and K1 ̸⊆ K2 ∪K3, K2 ̸⊆ K1 ∪K3 and
K3 ̸⊆ K1 ∪K2.

A continuum can be both chainable and circularly chainable. Then
it is either indecomposable or 2-indecomposable. In this article, we
focus on circularly chainable, but not chainable, continua.

Remark 3. Nadler [Nad92] also uses the following terminology for con-
tinua:

• chainable: arc-like,
• circularly chainable: circle-like,
• circularly chainable but not chainable: proper circle-like.

Definition 5 (subchain). Let C = (C0, . . . Cm) be a circular chain. For
k, l ∈ {0, . . .m} we define a following sequence. If k ≤ l let Ck,l = (Ck, . . . , Cl).
If k > l let Ck,l = (Ck, . . . , Cm, C0, . . . , Cl). If l ̸= k− 1 and (k, l) ̸= (0,m) we
say that Ck,l is a subchain of C, and we write Ck,l ≤ C.

Remark 4. • Note that for l = k − 1, sequence Ck,l is a circular
chain, and therefore not a chain in general. Same holds for (k, l) =
(0,m).

• If l ̸= k − 1 and (k, l) ̸= (0,m), then Ck,l is a chain.
• Also note that for l ̸= k and m ≥ 3 we have Ck,l ̸= Cl,k.
• We can obtain a subchain of C by omitting one of its links. For example,
if 1 ≤ k ≤ m−1, then by omitting Ck we get (Ck+1, Ck+2, . . . , Ck−1) =
Ck+1,k−1.

• Next we note that for nonempty subset C0 of X, sequence (C0, C0, C0)
is a circular chain but not a chain.

• Let m ≥ 3 and let C = (C0, . . . , Cm) be a circular chain in X. If i ̸= j
then Ci ̸= Cj . For i ∈ {0, . . . ,m} we omit the link Ci to obtain a
chain whose all links are pairwise distinct (by Remark 1). From this
it follows that all links of C are pairwise distinct.

• Let C = (C0, . . . , Cm) be a circular chain in X. If m < 3, we will call
such C trivial, and if m ≥ 3 we will call it non-trivial.

• By omitting a link of a non-trivial circular chain, we obtain a non-
trivial chain.

Definition 6. Suppose X is a set, let C = (C0, . . . , Cm) and D =
(D0, . . . , Dn) be sequences of sets in X. If for each i ∈ {0, . . . , n} there exists
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(a) C2,7 (b) C7,2

j ∈ {0, . . . ,m} such that Di ⊆ Cj we say that D refines C. If D refines C and
both D0 ⊆ C0, Dn ⊆ Cm, we say that D strictly refines C.

Definition 7. Let (C0, . . . , Cm) be a sequence of sets in X. We define
the counter-sequence of C:

−C = (Cm, Cm−1, . . . , C0)

.

We note:

• If C is a (circular) chain, then −C is also a (circular) chain.
• For a chain C′ and a circular chain C we have: If C′ ≤ C, then−C′ ≤ −C.
• If C is sequence of sets, −(−C)) = C.
Let X be a set and let C = (C0, . . . , Cm) be a sequence of sets in X.

Let links(C) = {C0, . . . , Cm}, the set of all links of C. Obviously, links(C) =
links(−C).

Lemma 1. Let C andD be non-trivial chains such that links(C) = links(D).
Then C = D or C = −D.

Proof. Let C = (C0, . . . , Cm), D = (D0, . . . , Dn). From Remark 1 we
conclude that | links(C)| = m + 1 and | links(D)| = n + 1. From this we
conclude that m = n. We have C0 = Di, for 0 ≤ i ≤ n. We observe that
the only sets that C0 intersects are itself and C1. Every link Di such that
0 < i < n intersects itself, Di−1 and Di+1. Since Di−1 ̸= Di+1, we conclude
that i = 0 or i = n.

If i = 0, we observe that C1 intersects C0 = D0 but is itself not equal to
it. The only link of D that intersects D0 other than itself is D1. Therefore
C1 = D1. Similarly we conclude Ci = Di for all 0 ≤ i ≤ n, so C = D.

If i = n, we observe that C1 intersects C0 = Dn but is not equal to it.
The only link of D that intersects Dn other than itself is Dn−1. Therefore
C1 = Dn−1. Similarly we conclude Ci = Dn−i for all 0 ≤ i ≤ n, so C = −D.
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Definition 8. Let X be a set and C = (C0, . . . , Cm) a circular chain in
X. For 0 ≤ k ≤ m we define

C+k = (Ck, Ck+1, . . . , Cm, C0, . . . , Ck−1).

In addition, we define C+(m+1) = C+0. Informally, the operation C 7→ C+k

will be refered to as a rotation. The operation C 7→ −C will be refered to as
a reflection. We observe:

• C+0 = C;
• for each 0 ≤ k ≤ m, C+k is a circular chain and links(C) = links(C+k);
• for a chain C′, if C′ ≤ C, then C′ ≤ C+k, for all 0 ≤ k ≤ m;
• rotating and then reflecting a circular chain can be obtain by first
reflecting and then rotating it, −C+k = (−C)+(m−k+1).

Lemma 2. Let C and D be non-trivial circular chains such that links(C) =
links(D). Then there exists k = 0, . . . ,m such that C = D+k or C = −D+k.

Proof. Let C = (C0, . . . , Cm), D = (D0, . . . , Dn). Next we define C′ =
(C0, . . . , Cm−1). This sequence is obtained from C by omitting its last link
Cm. From Remark 4 we know that such sequence is a non-trivial chain. Then
Cm = Di, for some i ∈ {0, . . . , n}. We define D′ by omitting Di from D, i.e.
D′ = (Di+1, Di+2, . . . , Dn, D0, . . . Di−1). Since links(C′) = links(D′), either
C′ = D′ or C′ = −D′.

If we look C′ = D′ componentwise, we get (C0, . . . , Cm−1) = (Di+1,
Di+2, . . . , Di−1). By appending Cm = Di to the end of the sequences, we
get (C0, . . . , Cm) = (Di+1, Di+2, . . . , Di), i. e. C = D+(i+1).

If C′ = −D′ then we have (C0, . . . , Cm−1) = (Di−1, Di−2, . . . , D0, Dn, . . . , Di+1).
By appending Cm = Di to the end of the sequences, we get (C0, . . . , Cm) =
(Di−1, Di−1, . . . , D0, Dn, . . . , Di), i. e. C = −D+i.

Remark 5. Let C = (C0, . . . , Cm) be a nontrivial circular chain. Now we
can describe the family of all circular chains D such that links(D) = links(C).
It consists of m + 1 circular chains of the form C+k, k ∈ {0, . . . ,m} (which
are said to have the same orientation as C) and m+ 1 circular chains of the
form (−C)+k, k ∈ {0, . . . ,m} (which are said to have the opposite orientation
with regard to C).

Proposition 5. Let (X, d) be a metric space and S ⊆ X a circularly
chainable continuum. Then for each open circular chain C that covers S and
each ϵ > 0 there exists a compact ϵ-circular chain D in S which covers S and
refines C.

Proof. Let C = (C0, . . . , Cm) be a circular chain that covers S and let
ϵ > 0. Then the set {C0 ∩ S, . . . , Cm ∩ S} is an open cover of S. Since S is
compact, there exists λ > 0, a Lebesgue number of this cover. This means
that for each A ⊆ S such that diam(A) < λ there exists a member of this
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Figure 6. Refinement

cover which contains A. By Proposition 4, there exists a compact min{ϵ, λ}-
circular chain D = (D0, . . . , Dn) in S which covers S. For each i ∈ {0, . . . , n},
since diamDi < λ, there exists j ∈ {0, . . . ,m} such that Di ⊆ Cj ∩ S ⊆ Cj ,
so D refines C.

Two main results of this section follow, Lemma 3 and Theorem 3.

Lemma 3. Let X be a set, C = (C0, . . . , Cm) a circular chain in X and
k ∈ {1, . . . ,m − 1}. Let D = (D0, . . . , Dn) be a compact circular chain in
X which refines C. Suppose there is a subchain D′ ≤ D whose one end link,
Da is contained in C0, and other end link is Di, D′ refines (C0, . . . , Ck−1).
Furthermore suppose there is a subchain D′′ ≤ D whose one end link, Db is
contained in Ck, and other end link is Dj , D′′ refines (C1, . . . , Ck). Let Di

and Dj intersect. Then there exists a subchain of D which strictly refines
(C0, . . . Ck) or −(C0, . . . Ck).

Proof. We start by observing that either D′ = Da,i or D′ = Di,a. Next,
we consider the simple Case I. where D′ = D0,i. Then we consider Case II.,
with D′ = Da,i, and Case III. D′ = Di,a. We reduce Case II. and Case III.
to Case I.

Case I. Let D′ = D0,i. Subchain D′′ can then be obtained in two ways:
a) D′′ = Dj,b and b) D′′ = Db,j .
First, a) D′′ = Dj,b. We will now examine subcases dependent on the

position of index b: 1. j < b < n, 2. b ≤ j < n, 3. j ≤ b = n and 4.
b < j = n.
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Figure 7. Subchain addition

1. If j < b < n, we consider D0,b = D0, . . . , Db. In general we can
imagine this sequence as either

A) D0, . . . , Dj , Di, . . . , Db,

B) D0, . . . , Di = Dj , . . . , Db,

or C) D0, . . . , Di, Dj , . . . , Db,

three possibilities depending on the placement of intersecting links Di and
Dj . Notice that in such cases each link in D0,b is contained in D′ or in D′′.
Since D′ refines C0,k−1 and D′′ refines C1,k, it follows that D0,b refines C0,k.
Strict refinement follows from the fact that D0 ⊆ C0 and Db ⊆ Ck. Since
b < n, D0,b is a subchain of D.

2. If b ≤ j < n, then we consider if b ≤ i. If that is the case, then D0,b is
a subsequence of D0,i = D′.

If b > i, then D0,b = (D0, . . . , Di, Db = Dj). Each link of D0,b is in D′

except Db = Dj which is in D′′ = Dj,b. Again it holds that each link in D0,b is
contained in D′ or in D′′. We follow the arguments from the above paragraph
to prove that D0,b is a subchain of D that strictly refines C0,k.

3. If b = n, we observe that D0,b is now not a subchain of D. We have
now Db=n ⊆ Ck and D0 ⊆ C0. Since Dn and D0 intersect, so do Ck and
C0. It follows k ∈ {0, 1,m}, but by the condition of the lemma only k = 1
is possible. Since D′ refines (C0, . . . , Ck−1 = C0) it follows that Di ⊆ C0.
Similarly, D′′ refines (C1, . . . , Ck = C1), so Dj ⊆ C1. If Di is contained in C1,
then one-link chain (Di) refines both C0 and C1 and therefore strictly refines
(C0, . . . Ck=1). If Di ⊈ C1, then Di is not a link of D′′ = Dj , . . . , Db, and
then i < j holds. If j = n and i = 0, then (Dj , Di) is a subchain of D which
strictly refines −(C0, . . . , Ck). Otherwise, (Di, Dj) is a subchain of D which
strictly refines (C0, . . . , Ck).
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4. If b < j = n, thenDi andDn=j intersect. Then i ∈ {n−1, n, 0} follows.
If i = n−1 then the circular chainD is equal to (D0, . . . , Db, . . . , Di=n−1, Dj=n).
Subsequence D0,b is a subchain, and links(D0,b) ⊆ links(D′), so again it fol-
lows that D0,b is the solution. If i = n then D′ = D0,i=n = D. But D is a
circular chain, which contradicts condition of lemma which states that D′ is
a subchain of D. If i = 0 then D′′ = (Dj=n, Di=0, . . . , Db). We can see that
D0,b is a chain and that links(D0,b) ⊆ links(D′′).

b) Now, D′′ = Db,j . We consider the following subcases: 1. b ≤ j < n,
2. j < b < n, 3. b = n, 4. b < j = n.

1. b ≤ j < n. If b ≤ i, then D0,b is a subsequence of D0,i = D′.
If b > i, then D0,b = (D0, . . . , Di, Db = Dj).
In both cases each link in D0,b is contained in D′ or in D′′. Following the

arguments from previous cases, we conclude that D0,b is subchain of D which
strictly refines C0,k.

2. If j < b < n first we observe that b ̸= 1. If b = 1, then j = 0 follows.
But then the sequence D′′ = Db,j = D1,0 is not a subchain of D. Next, we
note that Db,0 is a subsequence of Db,j = D′′. The fact that b ̸= 1 implies
that Db,0 is a subchain of D. In addition, Db,0 strictly refines −(C0, . . . , Ck).

3. If b = n, we again conclude that the two-link chain (Dn, D0) strictly
refines −C0,k.

4. If b < j = n, we consider the sequence Db,0 = (Db, . . . Dj=n, D0). The
links Db, . . . Dj=n are contained in D′′, and the link D0 is contained in D′.
So, if Db,0 is a chain, then it is the desired subchain of D. If Db,0 is not a
chain, then b = 1. Now we have the two-link chain (D0, Db=1) which strictly
refines C0,k.

Case II. If D′ = Da,i then we consider the circular chain
D+a = (Da, Da+1, . . . , Da−1).

• Subchains of D and D+a coincide. Therefore D′ and D′′ are subchains
of D+a.

• Furthermore, D′ = (D+a)0,i′ . We have in fact changed the enumeration
of circular chain D so that starting link of subchain D′ has index 0.

• We apply the method from Case I. to obtain subchain E of D+a

which strictly refines C0,k or −C0,k. E is the desired solution, since it
is a subchain of D.

Case III. If D′ = Di,a first we rotate: D+(a+1) = (Da+1, Da+2, . . . , Dn,
D0, . . . , Da). Next we reflect: −D+(a+1) = (Da, Da−1, . . . , D0, Dn, . . . , Da+1).

We note:

• If E ≤ D, then −E ≤ −D+(a+1). This entails that both −D′ and −D′′

are subchains of −D+(a+1).
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Figure 8. Strict refinement

• Moreover, −D′ = (−D+(a+1))0,i′ , i.e. we have rotated and reflected
circular chain D, so that D′ again starts with link 0.

• Therefore, by applying method from Case I., we obtain a subchain E
of −D+(a+1) such that it strictly refines C0,k or −C0,k.

• If E strictly refines C0,k, then −E strictly refines −C0,k. Therefore −E
is a subchain of D that strictly refines C0,k or −C0,k.

Remark 6. Notice that the previous lemma holds even without the com-
pactness of D.

Theorem 3. Let (X, d) be a metric space, S ⊆ X a circularly chainable,
but not chainable continuum. Let ϵ0 > 0 be such that no compact ϵ0-chain
covers S. Let C = (C0, . . . , Cm) be an open circular ϵ0-chain that covers S.
For each compact circular chain D = (D0, . . . , Dn) which covers S and D ≤ C
and for each k ∈ {2, . . . ,m− 1}, there exists a subchain D′ of D such that D′

strictly refines (C0, . . . , Ck) or −(C0, . . . , Ck).

Proof. First we fix arbitrary D which covers S and refines C, then we
fix arbitrary k ∈ {2, . . . ,m− 1}. Let us suppose the following:

(*) no subchain of D strictly refines (C0, . . . , Ck) or − (C0, . . . , Ck),

and derive a contradiction.
Let us consider the set A of all i ∈ {0, . . . n} that are connected to C0, i.e.

such that there exists a subchain D′ of D in which one end link is Di, and the
other is contained in C0 and D′ refines (C0, . . . , Ck−1). Similarly, let B be a
set of all i ∈ {0, . . . n} that are connected to Ck, i.e. such that there exists a
subchain D′′ of D in which one end link is Di, and the other is contained in
Ck and D′′ refines (C1, . . . , Ck).
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Now let

C ′
1 =

⋃
i∈B

Di⊆C1

Di

...

C ′
k−1 =

⋃
i∈B

Di⊆Ck−1

Di

C ′
k =

⋃
Di⊆Ck

Di

...

C ′
m =

⋃
Di⊆Cm

Di

C ′
0 =

⋃
Di⊆C0

Di

C ′′
1 =

⋃
i∈A

Di⊆C1

Di

...

C ′′
k−1 =

⋃
i∈A

Di⊆Ck−1

Di

Let us consider the sequence of sets C′ = (C ′
1, . . . , C

′
k, . . . , C

′
m, C ′

0, C
′′
1 , . . . , C

′′
k−1).

After noting that some of this sets might be empty, we claim that the sequence
a) covers S, b) is a quasi-chain.

a) We will prove that D refines C′. Then, since D covers S, so does C′.
Let us choose arbitrary Di, for i ∈ {0, . . . ,m}. Since D refines C, Di ⊆
C0 ∪ · · · ∪ Cm. If Di is contained in one of the sets Ck, . . . , Cm, C0, then by
definition Di is contained in one of the sets C ′

k, . . . , C
′
m, C ′

0.
If Di isn’t contained in one of the sets Ck, . . . , Cm, C0, then it must be

contained in one of the sets C1, . . . , Ck−1. In this case it will follow that
i ∈ A or i ∈ B. Note that there exists a link of D which isn’t contained
in C1 ∪ · · · ∪ Ck−1. Otherwise D refines (C1, . . . , Ck−1). Since D covers S,
so does (C1, . . . , Ck−1). But then S is covered by an open ϵ0-chain. Using
the Lebesgue number lemma, we can easily construct a compact ϵ0-chain
that covers S. This is in contradiction with assumption that S can not
be covered by a compact ϵ0-chain. Notice that if Dj is contained in one
of the sets C1, . . . , Ck−1, then Dj+1 is either also contained in one of the
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Figure 9. Links of C′

sets C1, . . . , Ck−1, or Dj+1 ⊆ C0 or Dj+1 ⊆ Ck. Therefore there exists
l ∈ {0, . . . ,m} such that (Di, . . . Dl−1) refines (C1, . . . Ck−1) and Dl ⊆ C0 or
Dl ⊆ Ck.

• If Dl ⊆ C0, then (Di, . . . , Dl−1, Dl) refines (C0, . . . , Ck−1), one end
link is Di, and the other end link, Dl, is contained in C0. Therefore
i ∈ A. It follows that Di is contained in one of the sets C ′′

1 , . . . , C
′′
k−1.

• If Dl ⊆ Ck, then (Di, . . . , Dl−1, Dl) refines (C1, . . . , Ck), one end link
is Di, and the other end link, Dl, is contained in Ck. Therefore i ∈ B.
It follows that Di is contained in one of the sets C ′

1, . . . , C
′
k−1.

b) Now let us see that (C ′
1, . . . , C

′
k, . . . , C

′
m, C ′

0, C
′′
1 , . . . , C

′′
k−1) is a quasi-

chain. Let B = {C ′
1, . . . , C

′
k−1}, E = {C ′

k, . . . , C
′
m, C ′

0}, A = {C ′′
1 , . . . , C

′′
k−1}.

First we choose two non-neighbouring links from same family, for instance
C ′

i, C
′
j ∈ B. Since by their definition C ′

i ⊆ Ci, C
′
j ⊆ Cj , and Ci and Cj being

disjoint, C ′
i and C ′

j must also be disjoint. Similarly, one concludes that two
non-neighbouring links are disjoint if they are both in E or both in A.
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Now let us observe two non-neighbouring links where one is in B and the
other in E . We conclude that the only nontrivial possibility are sets C ′

1 and
C ′

0. Now, let us suppose that they aren’t disjoint i.e. there exists x ∈ C ′
1∩C ′

0.
That means that there exist i ∈ B and j ∈ {0, . . . ,m} such that x ∈ Di ⊆ C1

and x ∈ Dj ⊆ C0. So, to summarize, one-link chain (Dj) refines C0,k−1, there
exists a subchain of D which refines C1,k, whose one end link is in Ck, and the
other end link Di intersects Dj . By applying Lemma 3, it follows that there
is a subchain of D which strictly refines (C0, . . . , Ck) or −(C0, . . . , Ck), so we
have derived a contradiction with (*). So C ′

1 and C ′
0 are disjoint.

If we observe two non-neighbouring links where one is in E and the other
in A, we can see that only nontrivial possibilities are C ′

k and C ′′
k−1. We

proceed as in the previous paragraph.
If we take two non-neighbouring links where one is in B and the other

in A, we can see that only nontrivial possibilities are C ′
u, C

′′
v such that Cu

and Cv intersect. Let us suppose that C ′
u and C ′′

v intersect, so there exist
i ∈ B, j ∈ A and x ∈ X such that x ∈ Di ⊆ Cu and x ∈ Dj ⊆ Cv. So
there is a subchain of D which refines C0,k−1, whose one end link is in C0 and
the other is Dj , there also exists a subchain of D which refines C1,k, whose
one end link is in Ck, and the other end link Di intersects Dj . By applying
Lemma 3, it follows again that there is a subchain of D which strictly refines
(C0, . . . , Ck) or −(C0, . . . , Ck), so we have derived a contradiction. So C ′

u and
C ′′

v are disjoint.
So by now we have proven that C′ is a quasi-chain which covers S. By

construction, C′ refines C, so C′ is an ϵ0-quasi-chain. By removing empty links,
we construct a compact ϵ0-chain which covers S. But this is in contradiction
with our assumption that no compact ϵ0-chain covers S. Therefore we must
reject (*), so there exists subchain D′ of D such that D′ strictly refines C0,k
or −C0,k.

4. Formal circular chains

Let (X, d, α) be a computable metric space and let a ∈ X be a computable
point in this space. Using Proposition 2 it is easy to conclude that the set
{i ∈ N | a ∈ Ii} is c.e. From this it follows that the set {j ∈ N | a ∈ Jj} is
also c.e. Consequently we have the following proposition:

Proposition 6. Let (X, d, α) be a computable metric space and let a ∈ X
be a computable point in this space. Then

{l ∈ N | a ∈ J(l)0}

is a c.e. set.
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Definition 9. Let (X, d, α) be a computable metric space and let v, w ∈
N. We say that Iv is formally contained in Iw and we write Iv ⊆F Iw if

d(λv, λw) + ρv < ρw.

Let a, b ∈ N. We say that Ja is formally contained in Jb and we write Ja ⊆F Jb
if

for each u ∈ [a] there exists v ∈ [b] such that Iu ⊆F Iv.

Remark 7. Note that Iu ⊆F Iv denotes a relation between the indeces
u and v, not between the sets Iu and Iv. The same holds for Ja ⊆F Jb.

If Iu ⊆F Iv, then Îu ⊆ Iv. Therefore Ja ⊆F Jb implies Ĵa ⊆ Jb.

Proposition 7. Let (X, d, α) be a computable metric space. Then

A = {(u,w) ∈ N2 | Iu ⊆ Iv}
is a c.e. set.

Proof.

(u, v) ∈ A ⇐⇒ d(λu, λv) + ρu < ρv,

and now we apply Proposition 2.

Definition 10. Let (X, d, α) be a computable metric space and let i, j ∈
N. We say that Ii and Ij are formally disjoint, and we write Ii ⋄ Ij , if

d(λi, λj) > ρi + ρj .

Let a, b ∈ N. We say that Ja and Jb are formally disjoint, and we write Ja⋄Jb,
if

Ii ⋄ Ij , for every i ∈ [a] and j ∈ [b].

Remark 8. Formal disjointness is not a relation between the sets Ii and
Ij , but between the indeces i and j. The same holds for Ja ⋄ Jb.

If Ii ⋄ Ij , then Îi ∩ Îj = ∅. Consequently, Ja ⋄ Jb implies Ĵa ∩ Ĵb = ∅.

The following proposition easily follows from Remark 7, Remark 8 and
the fact that in a computable metric space Cl(Jj) ⊆ Ĵj holds.

Proposition 8. Let (X, d, α) be a computable metric space and let a, b ∈
N. Then the following implications hold:

Ja ⊆F Jb =⇒ Cl(Ja) ⊆ Jb,

Ja ⋄ Jb =⇒ Cl(Ja) ∩ Cl(Jb) = ∅.

Definition 11. Let (X, d, α) be a computable metric space. Let l ∈ N.
We define

Hl = (J(l)0 , . . . , J(l)l).

We say that l represents a formal circular chain or, shortly, that Hl is a
formal circular chain if for all i, j ∈ {0, . . . l̄}
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1 < |i− j| < l̄ =⇒ J(l)i ⋄ J(l)j .
We define ⋃

Hl =
⋃
k∈[l]

Jk.

Using propositions 1, 2 and 3, it is not hard to prove the following propo-
sition. For details, see [Ilj09, Proposition 8] and [Ilj13, Proposition 5.4.].

Proposition 9. Let (X, d, α) be a computable metric space. The follow-
ing sets are c.e.:

{(i, j) ∈ N2 | Ii ⋄ Ij},
{(a, b) ∈ N2 | Ja ⋄ Jb},
{(a, b) ∈ N2 | Ja ⊆F Jb},
{l ∈ N | Hl is a formal circular chain}.

By [Ilj13, Proposition 5.3.] we have:

Proposition 10. Let K be a semicomputable set in a computable metric
space (X, d, α). The set

{l ∈ N | K ⊆
⋃

Hl}
is c.e.

Remark 9. Let ϵ0 > 0 and let K be a circularly chainable, but not
ϵ0-chainable, continuum in a computable metric space (X, d, α). Let l ∈ N
be such that Hl is a formal circular chain which covers K and such that
fmesh(l) < ϵ0. Then (J(ly)0 ∩ K, . . . , J(ly)ly

∩ K) is a circular chain in K.

Namely, non-neighbouring links do not intersect because Hl is a formal cir-
cular chain. Neighbouring links intersect because otherwise there would exist
an ϵ0 chain in K covering K, which contradicts the fact that K is not ϵ0-
chainable.

Definition 12. Let (X, d, α) be a computable metric space. Let l, n ∈ N.
We say that Hl formally refines Hn and we write

Hl ≤ Hn,

if for all i ∈ [l] there exists j ∈ [n] such that Ji ⊆F Jj .
Similarly, we say that (Ja0 , . . . , Jak

) formally refines (Jb0 , . . . , Jbl) if for
each i ∈ {0, . . . , k} there exists j ∈ {0, . . . , l} such that Jai ⊆F Jbj .

Definition 13. Let (X, d, α) be a computable metric space. Let l, l′, k, k′ ∈
N. We write

Hk′

l′ ≤ Hk
l

if the following holds:
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• Hl′ ≤ Hl,
• (J(l′)0 , . . . , J(l′)k′ ) formally refines (J(l)0 , . . . , J(l)k),
• J(l′)0 ⊆F J(l)0 , J(l′)k′ ⊆F J(l)k .

Definition 14. Let (X, d, α) be a computable metric space and let A ⊆
X, j ∈ N and r > 0. We are going to write

A ⊆r Jj

if the following holds:

A ⊆ Jj ,

Ii ∩A ̸= ∅, for each i ∈ [j],

ρi < r, for each i ∈ [j].

Definition 15. Let (X, d, α) be a computable metric space, let A,B ⊆ X
and r > 0. We say that the number r is an (A,B)- separator if for all i, j ∈ N
the following implication holds:

(A ⊆r Ji and B ⊆r Jj) =⇒ Ji ⋄ Jj .

Definition 16. Let (X, d, α) be a computable metric space, let K be a
compact set in (X, d), suppose r > 0 and let a ∈ N. We say that the number
r is an (K, a)- augmentator if for each j ∈ N the following implication holds:

K ⊆r Jj =⇒ Jj ⊆F Ja.

Remark 10. Note if A,B are compact sets in (X, d), r is an (A,B)-
separator and r′ ∈ ⟨0, r⟩, then r′ is also an (A,B)- separator. Similarly, if r is
a (K, a)-augmentator and r′ ∈ ⟨0, r⟩, then r′ is also an (K, a)- augmentator.

Here we state four useful results: Lemma 4, Proposition 11, Lemma 5 and
Proposition 12. The proofs can be found in [IP18, Lemma 4.8. - Proposition
4.13.].

Lemma 4. Let (X, d, α) be a computable metric space, letK be a nonempty
compact set in (X, d) and let r > 0. Then there exists l ∈ N such thatK ⊆r Jl.

Proposition 11. Let (X, d, α) be a computable metric space and let
A,B be disjoint nonempty compact sets in (X, d). Then there exists r > 0
such that r is an (A,B)-separator.

Lemma 5. Let (X, d, α) be a computable metric space, let A ⊆ X, j ∈ N
and r > 0 such that A ⊆r Jj . Then

fdiam(j) < diam(A) + 4r.

Proposition 12. Let (X, d, α) be a computable metric space, let a ∈ N
and let K be a compact set in (X, d) such that K ⊆ Ja. Then there exists
r > 0 such that r is an (K, a)-augmentator.
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Lemma 6. Let (X, d, α) be a computable metric space. Let K be a
nonempty finite collection of nonempty compact sets in (X, d). Let A be
a finite subset of N and ϵ > 0. Then for every K ∈ K there exists iK ∈ N
such that for all K,L ∈ K, a ∈ A the following holds:

1. K ⊆ JiK ;
2. K ∩ L = ∅ =⇒ JiK ⋄ JiL ;
3. K ⊆ Ja =⇒ JiK ⊆F Ja;
4. fdiam(iK) < diamK + ϵ.

Proof. We define ∆ = {(K,K ′) | K,K ′ ∈ K,K ∩K ′ = ∅}. By Proposi-
tion 11 for every (K,K ′) ∈ ∆ there exists µK,K′ > 0 which is a (K,K ′)− sep-
arator. If ∆ = ∅ we define µS = 1, otherwise µS = min{µK,K′ | (K,K ′) ∈ ∆}
(existence of the minimum follows from the finiteness of K).

Next, we define Γ = {(K, a) ∈ K × A | K ⊆ Ja}. By Proposition 12 for
each (K, a) ∈ Γ there exists µK,a which is an (K, a)-augmentator. If Γ = ∅ we
define µA = 1, otherwise µA = min{µK,a | (K, a) ∈ Γ}. Finiteness of K and
A implies the finiteness of Γ, which ensures the existence of the minimum.

Now we set µ = min{µS , µA, ϵ/8}.
1. By Lemma 4 for each K ∈ K there exists iK ∈ N such that K ⊆µ JiK .
2. Let K,L ∈ K be disjoint. Then (K,L) ∈ ∆, so µ is a (K,L)-separator.

Since K ⊆µ JiK and L ⊆µ JiL , we have that JiK ⋄ JiL follows.
3. Let K ∈ K, a ∈ A be such that K ⊆ Ja. Then (K, a) ∈ Γ and µ is an

(K, a)-augmentator. Now K ⊆µ JiK implies JiK ⊆F Ja.
4. We know from Lemma 5 and from K ⊆µ JiK that fdiam(iK) ≤

diamK + 4µ. Then fdiam(iK) ≤ diamK + 4 · ϵ/8 < diamK + ϵ.

Lemma 7. Let (X, d, α) be a computable metric space. Suppose S is a
circularly chainable continuum with a ∈ S. Let n ∈ N such that S ⊆ ∪Hn.
Let ϵ > 0. Then there exists l ∈ N such that:

1. S ⊆ Hl;
2. Hl is a formal circular chain;
3. fmesh(l) < ϵ;
4. Hl ≤ Hn;
5. a ∈ J(l)0 .

Proof. The set links(Hn) = {J(n)0 , . . . , J(n)n} is an open cover of S in
(X, d). Therefore, {J(n)0∩S, . . . , J(n)n∩S} is an open cover of S in (S, d|S×S).
There exists λ > 0 which is the Lebesgue number of this cover, i.e. for every
A subset of S such that diamA < λ there exists i ∈ {0, . . . , n} such that
A ⊆ J(n)i .

Let K = (K0, . . .Km) be a compact min{ϵ/2, λ}-circular chain in S which
covers S. Such circular chain exists because of Proposition 4. If a ∈ K0, then
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we proceed. If a ∈ Ki for some i > 0, now we rotate K and notice that now a
is contained in the zeroth link of K+i Without loss of generality we proceed
with denoting K+i by K.

Since diamKi < λ, for each i ∈ {0, . . . ,m} there exists wi ∈ {0, . . . , n}
such that Ki ⊆ J(n)wi

. Now we can apply Lemma 6 with K = {K0, . . . ,Km},
A = [n] and the parameter ϵ/2. For each Kj ∈ K we denote the corresponding
iKj

by kj . There exists l ∈ N such that ((l)0, . . . , (l)l) = (k0, . . . , km). Now,
Hl = (Jk0

, . . . Jkm
).

1. For each i ∈ {0, . . . ,m} we have Ki ⊆ Jki . Since K covers S, so does
Hl.

2. Let u, v ∈ {0, . . . ,m} such that 1 < |u− v| < m. Since K is a circular
chain, Ku and Kv are disjoint. Then by Lemma 6 Jku

⋄ Jkv
, therefore

Hl is a formal circular chain.
3. By Lemma 6, for every i ∈ {0, . . . ,m}, fdiam(ki) < diamKi+ ϵ/2 < ϵ.

Therefore fmesh(l) < ϵ.
4. Let us fix an arbitrary i ∈ {0, . . . ,m}. Since Ki ⊆ J(n)wi

, then again
by Lemma 6 Jki

⊆ J(n)wi
, i.e. Hl ≤ Hn.

5. By rotation of K, a ∈ K0 ⊆ J(l)0 .

Theorem 4. Let (X, d, α) be a computable metric space. Let K be
a circularly chainable continuum in (X, d) and let ϵ0 > 0 be such that no
compact ϵ0-chain covers K. Let a, b ∈ K such that a ̸= b. Then there exists
l ∈ N such that Hl is a formal circular chain which covers K, fmesh(l) <
min{1, ϵ0} and a ∈ J(l)0 , b ∈ J(l)k , where k ∈ {2, . . . , l − 1}.

Proof. Let r = d(a, b). We fix j ∈ N such that K ⊆ Jj . Then there
exists n ∈ N such that ((n)0, . . . , (n)n) = (j). Thus K ⊆

⋃
Hn follows.

We apply Lemma 7 with ϵ = min{1, ϵ0, r/4}: there exists l ∈ N such that
Hl is a formal circular chain which covers K with a ∈ J(l)0 and fmesh(l) < ϵ.

Since Hl covers K, we have b ∈ J(l)k for some k ∈ {0, . . . , l}. But we
claim that Hl is a circular chain as well. Namely, if there exist neighbouring
links which are disjoint, then there exists an ϵ0-chain which covers K, but
K is not ϵ0-chainable. From this it follows |i − j| ≤ 1 or |i − j| = l =⇒
J(l)i ∪ J(l)j ̸= ∅. For this reason J(l)0 intersects the sets J(l)0 , J(l)1 and J(l)l .

Let us now assume k ∈ {0, 1, l}. Now J(l)0 and J(l)k intersect and therefore
d(a, b) ≤ diam(J(l)0 ∪ J(l)k) ≤ diam J(l)0 + diam J(l)k < 2ϵ ≤ r

2 , which is a

contradiction with d(a, b) = r. Therefore k ∈ {2, . . . , l − 1}.

Let (X, d, α) be a computable metric space. We fix K, a semicomputable
circularly chainable, but not chainable, continuum in (X, d). Let ϵ0 > 0 be
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such that no compact ϵ0-chain covers K. Without loss of generality we can
assume that ϵ0 ∈ Q.

We define the sets Γ and Ω:

Γ = {(l, k, l′, k′) ∈ N4 | Hl,Hl′ formal circular chains which cover K,

Hk′

l′ ≤ Hk
l , fmesh(l′) <

1

2
fmesh(l), k ≤ l, k′ ≤ l′};

Ω = {(l, k) ∈ N2 | Hl formal circular chain, fmesh(l) < ϵ0,

K ⊆
⋃

Hl, 2 ≤ k ≤ l − 1}.

Proposition 13. The sets Γ and Ω are c.e.

Proof. From Proposition 10 and Proposition 1 we know that {(l, k) ∈
N2 | K ⊆

⋃
Hl} is c.e. Similarly, using Propositions 9 and 1 we know that

{(l, k) ∈ N2 | Hl a formal circular chain} is c.e. The set {(l, k) ∈ N2 |
fmesh(l) < ϵ0} is c.e. due to Proposition 2. The fact that {(l, k) ∈ N2 |
2 ≤ k ≤ l − 1} is computable and therefore c.e. is obvious. The set Ω is an
intersection of c.e. sets and therefore c.e.

We similarly conclude for Γ. The only challenging part is to prove that
{(l, k, l′, k′) ∈ N4 | Hk′

l′ ≤ Hk
l } is c.e. We first prove that Γ1 = {(l, l′) ∈

N2 | Hl′ ≤ Hl} is c.e. The set {(l, i, l′, j) ∈ N4 | Ji ⊆F Jj and j ∈ [l]} is
c.e due to Proposition 9 and Proposition 3. But then, using Proposition 1,
so is Γ2 = {(l, i, l′) ∈ N3 | ∃j ∈ N such that Ji ⊆F Jj and j ∈ [l]}. We then
conclude:

(l, l′) ∈ Γ1 ⇐⇒ ∀i ∈ [l′] ∃j ∈ [l] such that Ji ⊆F Jj

⇐⇒ ∀i ∈ [l′] (l, i, l′) ∈ Γ2

⇐⇒ {(l, i, l′) ∈ N3 | i ∈ [l′]} ⊆ Γ2.

The function Φ : N2 → P(N3), Φ(l, l′) = {(l, i, l′) ∈ N3 | i ∈ [l′]} is an e.f.v.
function. Then (l, l′) ∈ Γ1 ⇐⇒ Φ(l, l′) ⊆ Γ2. It follows from Proposition 3
that Γ1 is c.e. We proceed similarly with {(l, k, l′, k′) ∈ N4 | (J(l′)0 , . . . , J(l′)k′ )
formally refines (J(l)0 , . . . , J(l)k)}, and conclude that Γ is c.e.

Proposition 14. For every (l, k) ∈ Ω there exists (l′, k′) ∈ Ω such that
(l, k, l′, k′) ∈ Γ.

Proof. Let us fix an arbitrary (l, k) ∈ Ω. Now, Hl = (J(l)0 , . . . , J(l)l) is

a formal circular chain which covers K, and 2 ≤ k ≤ l− 1, fmesh(l) < ϵ0. Let
m = l and C = (C0, . . . , Cm) = (J(l)0 , . . . , J(l)l). Now C is a circular chain
which covers K and mesh C < ϵ0. We choose some compact circular chain E =
(E0, . . . , En) in K which covers K such that E ≤ C and mesh E < 1

4 fmesh(l)
(this is possible due to Proposition 5).
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By Theorem 3 there exists a subchain E ′ of E which strictly refines
(C0, . . . , Ck) or −(C0, . . . , Ck). We have E ′ = Eu,v. Our goal is to align 1) the
orientation and 2) the starting link of E with (C0, . . . , Ck). More precisely,
we seek a circular chain D = (D0, . . . , Dn) such that links(D) = links(E) and
its subchain D′ = D0,k′ such that links(D′) = links(E ′) and D′ refines C0,k
with D0 ⊆ C0, Dk′ ⊆ Ck, for some k′ ≤ n − 1. That way we keep the strict
refinement of the subchains, but we gain more control over their orientations.

1) If Eu ⊆ C0 and Ev ⊆ Ck, we proceed with D = E . If Ev ⊆ C0 and
Eu ⊆ Ck, then we note that −E ′ ≤ −E , so without loss of generality we
proceed with D = −E .

2) Without loss of generality we can put D′ = (D0, . . . , Dk′) for some
k′ ≤ n− 1. Else, if D′ = Du,v for some u ̸= 0, we consider the circular chain
D+u instead of D and note that D′ = (D+u)0,k′ for some k′ ≤ n− 1.

Now we apply Lemma 6 with K = {D0, . . . , Dn}, A = {(l)0, . . . , (l)l}
and ϵ = 1

4 fmesh(l). For each i ∈ {0, . . . , n} there exists ji ∈ N such that
Di ⊆ Jji . We can now find l′ ∈ N such that ((l′)0, . . . , (l

′)l′) = (j0, . . . , jn).
Then Hl′ = (J(l′)0 , . . . , J(l′)l′ ) = (Jj0 , . . . , Jjn). Since D covers K, so does

Hl′ . If we choose a, b ∈ {0, . . . n} such that 1 < |a − b| < n, then Da ∩
Db = ∅, and by Lemma 6 Jja ⋄ Jjb , i.e. Hl′ is a formal circular chain. For

each i ∈ {0, . . . , n} there exists wi ∈ {0, . . . , l} such that Di ⊆ J(l)wi
and

therefore, by Lemma 6 J(l′)i ⊆F J(l)wi
, so we have Hl′ ≤ Hl. Next, we note

that fdiam(ji) < diamDi + ϵ < 1
4 fmesh(l) + 1

4 fmesh(l) = 1
2 fmesh(l), hence

fmesh(l′) < 1
2 fmesh(l). This entails fmesh(l′) < ϵ0.

We know that (D0, . . . , D
′
k) refines (C0, . . . , Ck) with D0 ⊆ C0, Dk′ ⊆ Ck

and we want to show that (J(l′)0 , . . . , J(l′)k′ ) formally refines (J(l)0 , . . . , J(l)k)
with J(l′)0 ⊆F J(l)0 , J(l′)k′ ⊆F J(l)k . By Lemma 6 D0 ⊆ J(l)0 and Dk′ ⊆ J(l)k
imply J(l′)0 ⊆F J(l)0 and J(l′)k′ ⊆F J(l)k . Let i ∈ {0, . . . , k′}. By refinement,
there exists wi ∈ {0, . . . , k} such that Di ⊆ J(l)wi

. That implies J(l′)i ⊆F

J(l)wi
. Therefore Hk′

l′ ≤ Hk
l and we have proven (l, k, l′, k′) ∈ Γ.

To prove (l′, k′) ∈ Ω it remains to show that 2 ≤ k′ ≤ l′ − 1. We note
that J(l)0 ∩ J(l)k = ∅ because of 2 ≤ k ≤ l − 1. But now, as mentioned,
J(l′)0 ⊆F J(l)0 and J(l′)k′ ⊆F J(l)k holds. We conclude J(l′)0 ∩ J(l′)k′ = ∅ and

therefore 2 ≤ k′ ≤ l′ − 1 and (l′, k′) ∈ Ω.

Here we state a well-known result from computable analysis:

Proposition 15. [IP18, Proposition 5.2.] Let k ∈ N \ {0}, T ⊆ Nk and
a ∈ T . Suppose φ : T → Nk is a partial recursive function such that φ(T ) ⊆ T .
Let f : N → Nk be the function defined by

f(0) = a, f(y + 1) = φ(f(y)).
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Figure 10. Recursive refinements

Then f is computable.

Here we state a useful auxilary result. Its proof can be found in [Ilj09].

Lemma 8. [Ilj09, Lemma 41.] Let (X, d) be a metric space which has
compact closed balls. Let Ck = (Ck

0 , . . . , C
k
mk

), k ∈ N be a sequence of open

chains such that Cl(Ck+1
0 ), . . . ,Cl(Ck+1

mk+1
)) strictly refines (Ck

0 , . . . , C
k
mk

), and

mesh(Ck) < 2−k,∀k ∈ N. Let

S =
⋂
k∈N

(Cl(Ck+1
0 ) ∪ · · · ∪ Cl(Ck+1

mk+1
)).

Then S is a continuum chainable from a to b, where a ∈
⋂

k∈N Ck
0 , b ∈⋂

k∈N Ck
mk

.

Before the main theorem, we state another useful result:

Lemma 9. [IP18, Lemma 6.6.] Let (X, d, α) be a computable metric space
and let S be a nonempty compact set in (X, d). Suppose there exists a com-
putable function f : N → N such that, for each k ∈ N, fmesh(f(k)) < 2−k, S ⊆⋃
Hf(k) and each of the sets in the finite sequence Hf(k) intersects S. Then

S is a computable set.

Theorem 5. Let (X, d, α) be a computable metric space. Suppose K ⊆
X is a circularly chainable, but not chainable, semicomputable continuum.
Let a, b ∈ K such that a ̸= b. Then for every ϵ > 0 there exist computable
points a′, b′ ∈ K such that d(a, a′) < ϵ, d(b, b′) < ϵ and a computable subcon-
tinuum L of K chainable from a′ to b′.

Proof. Let ϵ > 0.
By Proposition 13 we have that Γ and Ω are c.e. By Proposition 14 we

have that for every (l, k) ∈ Ω there exists (l′, k′) ∈ Ω such that (l, k, l′k′) ∈ Γ.
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It follows from Proposition 1 that there exists a partial computable function
φ : Ω → R2 such that φ(Ω) ⊆ Ω and (l, k, φ(l, k)) ∈ Γ for each (l, k) ∈ Ω.

We should note that by Theorem 4 there exists (l0, k0) ∈ Ω such that
fmesh(l0) < min{1, ϵ}, a ∈ J(l0)0 , b ∈ J(l0)k0

. Therefore we can apply Proposi-

tion 15 and introduce a computable function f : N → N2 such that

f(0) = (l0, k0), f(y + 1) = φ(f(y)).

Next, we introduce the componentwise notation of the function f : f(y) =
(ly, ky). We note that f(y) ∈ Ω holds for every y ∈ N. Therefore (f(y), φ(f(y)))
∈ Γ for every y ∈ N. By definition of f this implies (f(y), f(y + 1)) ∈ Γ, and
then (ly, ky, ly+1, ky+1) ∈ Γ for every y ∈ N. By definition of Γ we then have

Hky+1

ly+1
≤ Hky

ly
, for every y ∈ N. We also claim that fmesh(ly) < 2−y,∀y ∈ N.

Namely, that follows from fmesh(l0) < 1 and fmesh(ly+1) <
1
2 fmesh(ly).

Next, we fix y ∈ N. We define:

Cy = (Cy
0 , . . . , C

y
my

) = (J(ly)0 ∩K, . . . , J(ly)ky
∩K).

We try to see if conditions of Lemma 8 are met.
We claim that Cy is a chain in K. Namely, from Remark 9 we know that

(J(ly)0 ∩K, . . . , J(ly)ly
∩K) is a circular chain in K. Hence Cy is its subchain.

Next, we claim that

Cl(Cy+1
0 ), . . .Cl(Cy+1

my+1
) refines Cy,

with Cl(Cy+1
0 ) ⊆ Cy

0 ,Cl(C
y+1
my+1

) ⊆ Cy
my

.

To prove this, first we apply Proposition 8 to Hky+1

ly+1
≤ Hky

ly
to establish that

(Cl(J(ly+1)0), . . . ,Cl(J(ly+1)ky+1
)) refines (J(ly)0 , . . . , J(ly)ky

).

Because of this now

(Cl(J(ly+1)0)∩K, . . . ,Cl(J(ly+1)ky+1
)∩K) refines (J(ly)0 ∩K, . . . , J(ly)ky

∩K).

Now we use the simple topological fact Cl(A ∩K) ⊆ Cl(A) ∩K to conclude

(Cl(J(ly+1)0 ∩K), . . . ,Cl(J(ly+1)ky+1
∩K)) refines (J(ly)0 ∩K, . . . , J(ly)ky

∩K),

from which Cl(Cy+1
0 ), . . .Cl(Cy+1

my+1
) refines Cy is evident.

Similarly, we conclude that Cl(J(ly+1)0∩K) ⊆ J(ly)0∩K and Cl(J(ly+1)ky+1
∩

K) ⊆ J(ly)ky
∩K. This, by definition of Cy, entails Cl(Cy+1

0 ) ⊆ Cy
0 and Cl(Cy+1

my+1
)

⊆ Cy
my

.
By Lemma 8 we have obtained a continuum

L =
⋂
k∈N

(Cl(Ck+1
0 ) ∪ · · · ∪ Cl(Ck+1

mk+1
)),
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chainable from a′ ∈
⋂

k∈N Ck
0 to b′ ∈

⋂
k∈N Ck

mk
. By construction, L ⊆ K,

so L is a subcontinuum of K. Next we notice that since a, a′ ∈ J(l0)0 and
fmesh(l0) < ϵ, d(a, a′) < ϵ follows. Similar holds for d(b, b′) < ϵ.

To prove that a′ and b′ are computable points first we fix y ∈ N. Then
a′ ∈ J(ly)0 . The set J(ly)0 is the union of rational balls Ik, where k ∈ [(ly)0].
We can explicitly write one such k, namely k = ((ly)0)0. The center of this
Ik, λ((ly)0)0 is also contained in J(ly)0 . Since fmesh(ly) < 2−y, this entails

d(a′, λ((ly)0)0) < 2−y,

or, by definition of function λ,

d(a′, ατ1(((ly)0)0)) < 2−y.

Hence a′ is a computable point, and similar argument can be brought forth
for b′.

Now it is sufficient to prove that L is computable. We know that L ⊆
J(ly)0 ∪ · · · ∪ J(ly)ky

,∀y ∈ N. For each y ∈ N there exists w ∈ N such that

((w)0, . . . , (w)w) = ((ly)0, . . . , (ly)ky
). The set

{(y, w) ∈ N2 | ((w)0, . . . , (w)w) = ((ly)0, . . . , (ly)ky )}

is computable. Therefore there exists a computable function f : N → N
such that ((f(y))0, . . . , (f(y))f(y)) = ((ly)0, . . . , (ly)ky

), for all y ∈ N. Then

L ⊆
⋃
Hf(y),∀y ∈ N. For any given y ∈ N we know that J(f(y))0 and J(f(y))

f(y)

intersect L, since a′, b′ ∈ L. But, since L is connected, every link of Hf(y)

intersects L, otherwise there would exist a separation of L. Then by Lemma
9 L is computable.

Remark 11. First we note the most important part of the result: Theo-
rem 5 ensures the existence of computable subcontinua of a semicomputable
circularly chainable, but not chainable, continuum K.

One might wonder whether we have succeeded to approximate some semi-
computable continuum with these computable subcontinua. The answer is
that this result guarantees no such thing, because there is no obvious can-
didate for the semicomputable continuum being approximated. One such
candidate might be K itself, but here we restate the fact that the topological
properties of K ensure that it is computable as well. Any possible approxi-
mations are then not useful. We should also note that while there is a sub-
continuum L of K chainable from a′ to b′, there need not be a subcontinuum
of K chainable from a to b (see Example 2).

Instead, what we can approximate is any pair of given points a and b on
K with computable points on a′ and b′ on K. On top of that, there exists a
computable subcontinuum L of K chainable from a′ and b′.
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Figure 11. Computable intermediate value theorem

5. Computable intersection points

Our final result is motivated by the computable version of the Interme-
diate value theorem. We state it again here:

Theorem 6. [PR89] A computable function f : [0, 1] → R such that
f(0) < 0, f(1) > 0 has a computable zero.

Remark 12. We now make the following observations and try to obtain
a setting for possible generalizations of the theorem.

• Let S be the x-axis, and Γ(f) the graph of f . Then Γ(f)∩ S contains
a computable point.

• Let U be the lower and V the upper half-plane. The graph Γ(f)
intersects both U and V .

• Γ(f) is a computable subset of R2. It is also a continuum considering
the Euclidean metric.

• This leads us to the following attempt: Suppose K is a continuum in
R2 which intersects both U and V . Then K certainly intersects S.
Does

(5.1) K computable =⇒ K intersects S in a computable point

hold?
In general, no! Let f : [0, 1] → R be a nonnegative computable

function which has zeroes, but none of them is computable [Spe59].
Let K = Γ(f)∪Γ(−f). Then K is a computable continuum, therefore
it intersects S, but none of the points in K ∩ S are computable.

• Some conditions under which (5.1) holds have been examined in [IP18].
One such condition is that K is an arc.

We restate this important result for clarity:
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Figure 12. No computable intersection points

Theorem 7. [IP18, Theorem 5.3] Let (X, d, α) be a computable metric
space and let U and V be disjoint c.e. open sets in X. Let S = X \ (U ∪ V ).
Suppose K is a continuum in X chainable from a to b, where a ∈ U and
b ∈ V . Suppose K is a computable set and K ∩ S is totally disconnected.
Then K ∩ S contains a computable point.

Remark 13. A topological space X is said to be totally disconnected if
every connected component of X is a one-point set. Note that any nonempty
subspace of X is then totally disconnected as well.

We conclude with the main result of this section:

Theorem 8. Let (X, d, α) be a computable metric space and let U and V
be disjoint c.e. open sets in X. Let S = X \(U∪V ). Suppose K is a circularly
chainable, but not chainable, continuum in X which intersects both U and V .
Suppose K is a semicomputable set and K ∩ S is totally disconnected. Then
K ∩ S contains a computable point.

Proof. We choose arbitrary points a ∈ K∩U, b ∈ K∩V . Since U and V
are open, there exist r1, r2 > 0 such that B(a, r1) ⊆ U and B(b, r2) ⊆ V . Let
ϵ = min{r1, r2}. By Theorem 5 it follows that there exist computable points
a′, b′ ∈ K such that d(a, a′) < ϵ, d(b, b′) < ϵ and a computable subcontinuum
L of K chainable from a′ to b′. Note that a′ ∈ L ∩ U, b′ ∈ L ∩ V , and L ∩ S
is totally disconnected. Therefore, following Theorem 2, L ∩ S contains a
computable point, thus K ∩ S contains it as well.
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Izračunljivi potkontinuumi cirkularno lančastih kontinuuma

David Tarandek

Sažetak. Ovaj rad istražuje cirkularno lančaste kon-

tinuume, koji nisu lančasti, u izračunljivim metričkim pros-

torima. Za proizvoljan takav kontinuum K vrijedi da iz nje-

gove poluizračunljivosti slijedi izračunljivost. U literaturi se često

proučavaju uvjeti pod kojima poluizračunljivost skupa implicira

njegovu izračunljivost, s naglaskom na topološka svojstva. Kada

ti uvjeti nisu zadovoljeni, prirodno je istraživati aproksimativne

pristupe. U ovom članku fokusiramo se na specifične izračunljive

potkontinuume od K. Glavni rezultat jest da svake dvije točke

na poluizračunljivom, cirkularno lančastom, no ne i lančastom,

kontinuumu K možemo aproksimirati izračunljivim točkama tako

da postoji izračunljivi potkontinuum L od K koji ih povezuje.

Posljedično, ako su U i V disjunktni i izračunljivo prebrojivi

otvoreni skupovi u izračunljivom metričkom prostoru, pokazu-

jemo da, ako K siječe i U i V , tada njegov presjek s komple-

mentom njihove unije nužno sadrži izračunljivu točku kada je taj

presjek totalno nepovezan.
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