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COMPUTABLE SUBCONTINUA OF CIRCULARLY
CHAINABLE CONTINUA

DAvID TARANDEK

ABSTRACT. This paper explores, in computable metric spaces, circu-
larly chainable continua which are not chainable. Given such a contin-
uum K, if we endow it with semicomputability, its computability follows.
Conditions under which semicomputability implies computability, typically
topological, are extensively studied in the literature. When these condi-
tions are not satisfied, it is natural to explore approximate approaches. In
this article we investigate specific computable subcontinua of K. The main
result establishes that, given two points on a semicomputable, circularly
chainable, but non-chainable continuum K, one can approximate them
by computable points such that there exists a computable subcontinuum
connecting these approximations. As a consequence, given disjoint com-
putably enumerable open sets U and V' intersected by K, the intersection
of K with the complement of their union necessarily contains a computable
point, provided that this intersection is totally disconnected.

1. INTRODUCTION

A compact set K C R is said to be computable if it can be effectively
approximated by finitely many rational points with any given precision. A
compact set K C R is said to be semicomputable if there is a computable
function f : R — R such that the set of its zeros equals K.

In R the following implication holds:

K computable = K semicomputable.

This also holds in more general ambient spaces such as R”, computable
metric spaces and computable topological spaces.
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The converse,
K semicomputable =— K computable,

does not hold. A well known counterexample from Miller [Mil02] goes like
this: Let v € [0,1] be a left-computable, but not computable, real number.
Then the segment [y, 1] is semicomputable, but not computable.

But, for each € > 0 there exists 7. € (v,7 + €) such that [y, 1] is com-
putable. In that way we inner approximate the semicomputable set [y, 1] with
the computable sets [, 1].

This example ilustrates two common approaches in computable analysis.

1. Which topological conditions render a semicomputable set K computable?
2. If this conditions aren’t met, under which conditions can K be inner ap-
proximated by a desired class of computable sets?

EXAMPLES 1. e A semicomputable set homeomorphic to the circle
S C R? is computable [Mil02].

e Specker [Speb9| shows that there exists a computable function f : R —
R which has zeros, but none of them are computable. It follows that
K = f71({0}) is a semicomputable set that contains no computable
points. In particular, K has no nonempty computable subsets.

e It is shown that K from the previous example is homeomorphic to the
Cantor set. It is compact, but not connected. However, (K x [0,1]) U
([0,1] x K) C R? is a compact and connected set, i.e., a continuum,
which is semicomputable and has no nonempty computable subsets.

e There exists a contractible, locally contractible semicomputable curve
in R? which cannot be inner approximated by computable continua
[Kihi2).

Topological properties have a significant impact on the behavior of sets
with respect to approaches 1. and 2. Among other objects, arcs and topo-
logical circles are often studied in the literature, as well as their respective
generalizations, chainable and circularly chainable continua. Here are some
important results concerning approach 1.

[11j09] : In a computable metric space, every semicomputable circularly chain-
able continuum that is not chainable is computable.

|CIV19| : The same holds in a computable topological space. Also, every
semicomputable continuum K that is chainable from a to b, where a
and b are computable points, is computable.

[IS1§] : A semicomputable manifold with a semicomputable boundary is com-
putable.

We now present several important results regarding approach 2.

[[P18] : If A is a semicomputable arc in a computable metric space with
endpoints a and b, then for every € > 0 there exist computable points



COMPUTABLE SUBCONTINUA OF CIRCULARLY CHAINABLE CONTINUA 3

a’ and b’ such that d(a,a’) <€, d(b,0') < €, and a computable arc A’
whose endpoints are a’ and b’ such that A’ C A.

|CHI21] : The same holds in a computable topological space. The same
conclusion holds for semicomputable chainable continua under the ad-
ditional assumption of decomposability.

[IJ24] : The same holds even without the decomposability assumption, if K
is a semicomputable continuum chainable from a to b, where a is a
computable point.

The first goal is to prove that, given a circularly chainable, but not chain-
able, continuum K in a computable metric space and two distinct points
a,b € K we can find computable points a’,b € K arbitrarily close to a and
b and a computable subcontinuum L of K chainable from a’ to b’. Some
similarities and differences are highlighted when contrasting this result with
the approach 2.

The second goal is to generalize a well known result stated in Pour-El,
Richards [PR89]:

THEOREM 1. Computable Intermediate Value Theorem. A com-
putable function f : [0, 1] — R such that f(0) < 0, f(1) > 0 has a computable
Zero.

Some generalizations have been studied in |IP18|, with the most promi-
nent result being:

THEOREM 2. Let (X,d,«) be a computable metric space and let U and
V be disjoint c.e. open sets in X. Let S = X \ (UUYV). Suppose K is a
continuum in X chainable from a to b, where a € U and b € V. Suppose K
is a computable set and K N .S is totally disconnected. Then K NS contains
a computable point.

We plan to show that the modification of Theorem [2| holds, where K is
a circularly chainable, but not chainable, continuum which intersects both U
and V.

Our choice of setting is a computable metric space. The result [AH23|
Theorem 3.4], shows that every semicomputable set S in a computable topo-
logical space can be effectively embedded into the Hilbert cube and therefore
computable topological spaces do not lead to a more general result.

2. PRELIMINARIES

Here we state some basic definitions and facts about computable metric
spaces. See [I1j09; IS18; IP18; Wei00; [Wei93].

Let k € N\ {0}. A function f: N¥ — Q is said to be computable if there
exist computable (i.e., recursive) functions a,b,c: N¥ — N such that

_ (e (@)



4 D. TARANDEK

for each € N*¥. A function f : N¥ — R is said to be computable if there
exists a computable function F : N¥*1 — Q such that

|f(z) = F(z,9)] <27

for all x € N¥, i € N.

Let (X, d) be a metric space, and let a be a sequence in X such that «(N)
is a dense set in (X, d). We say that (X, d, ) is a computable metric space if
the function

(i,5)  d(ai, o) N> = R
is computable.

Let (X, d,«) be a computable metric space. A point z € X is said to be
computable in (X, d, ) if there exists a computable function f : N — N such
that

d ($7Ozf(k)) <27k

for all £k € N.
We fix computable functions

(j,i)— ()i :N* N and j—j:N—=N
such that
{(()o: ()1,---,(G)7) | J € N}

is the set of all nonempty finite sequences in N.
For j € N, let
L] :=A{Gos -+ ()5}
Then each nonempty finite subset of N is equal to [j] for some j € N.

If (X,d,a) is a computable metric space, ¢ € N, and ¢ € Q with ¢ > 0,
we say that B(ay,q) is a rational open ball in this space. Here, for z € X and
r > 0, we denote by B(z,r) = {y € X : d(x,y) < r} the open ball of radius r
centered at z. Let 71,75 : N = N be fixed computable functions such that

{(ra(0), m2(0)) | i € N} = N?,

and let ¢ : N — Q be a fixed computable function whose image is the set of all
positive rational numbers. Let ()\;);en be the sequence of points in X defined
by A\i = a,(s), and let (p;)sen be the sequence of rational numbers defined by
Pi = Qry(i)- For i € N, we define

Note that {I; | i € N} is the set of all rational open balls in (X, d, ). There-
fore, the sequence (I;);en represents an effective enumeration of all rational
open balls.

Let (X, d,a) be a computable metric space. Any finite union of rational
open balls in this space is said to be a rational open set. For j € N we define
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Jj:UIi, jJ:UIAZ
€] i€j]
Then (J;) is an effective enumeration of all rational open sets in (X, d, @).
Let (X, d, o) be a computable metric space. For every j € N, we define
fdiam(j) := diam{\, | u € [j]} +2max{p, | u € [j]},
and call it the formal diameter of J;. This is formally a N — R function of
J, not of J;. We define a function fmesh : N — R by
fmesh(l) = max _fdiam((1),).
0<p<i
It is straightforward to conclude that the functions fdiam and fmesh are com-
putable [I1j09, Proposition 2, Proposition 13].
Let (X,d) be a metric space, A, B C X, and € > 0. We say that A and
B are e-close, and write A ~. B, if
(Va € A)(3b € B) (d(a,b) <e) and (Vb€ B)(Ja € A) (d(a,b) <e).
If A and B are nonempty compact sets in (X, d), the number
inf{e > 0| A~. B}

is called the Hausdorff distance from A to B, and it is denoted by dg (A, B).
It is not hard to check that, for € > 0, we have dy (A, B) < ¢ if and only
if A~, B.

DEFINITION 1. Let (X,d, ) be a computable metric space. We say that
a compact set S C X is computable in (X, d, «) if either S = () or there exists
a computable function f: N — N such that

S ~g-r {ay | i€ [f(k)]}, forallkeN.

DEFINITION 2. Let (X, d, ) be a computable metric space.
(i) A closed set S C X is said to be computably enumerable (c.e.) in
(X,d, ) if the set
{ieN|LNS#0}
is computably enumerable.
(ii) A compact set S C X is said to be semicomputable in (X, d, o) if the set
{ieN|SCJ}

is computably enumerable.
(iii) Anopen set U C X is said to be computably enumerable open in (X, d, «)

if
U=|JL
i€EA
for some c.e. subset A of N.
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It is not hard to see that these definitions do not depend on the particular
choices of the functions ¢, 71, 72, and j — [j].

For compact sets K in (X, d, a) we have the following important equiva-
lence from [I1j13, Proposition 2.6]:

K is computable <= K is semicomputable and c.e.
We state the following basic facts about computable functions of type
N* — N” and N*F — R:
PROPOSITION 1. (i) (Projection theorem) Let T C Nf*" be a com-
putably enumerable set. Then the set
S={zxeN|JyeN": (z,y) €T}

is computably enumerable.

(ii) (Single-valuedness theorem) Suppose 7' C NFt" G C NF and
Sy C N™ are computably enumerable sets such that for each x € Sy there
exists y € Sy with (x,y) € T. Then there exists a partial computable
(partial recursive) function f : S; — N™ such that f(S;) C Sy and

(z, f(x)) e T for each z € Sj.

(iii) If S € N" is a computably enumerable set and f : N* — N" is a
computable function, then the set f~!(S) is computably enumerable.

ProprosITION 2. (i) If f,g : N¥ — R are computable functions, then
f+ g and f — g are computable.
(i) If f,g : N¥ — R are computable functions, then the set

{z e N[ f(z) > g(a)}
is computably enumerable.
For m € N, let N,;, ={0,...,m}. Forn > 1, let
N» = {(x1,...,2n) | z1,...,2n € Nju }.

We say that a function ® : N¥ — P(N") is effectively finitely valued or
e.f.v. if the function ® : N*+" — N defined by

D(z,y) = Xow (), z €N yeN,

is computable (where xs : N®* — N denotes the characteristic function of
S C N") and if there exists a computable function ¢ : N* — N such that

®(zr) TN}, VoeN:

In the following proposition, we state some elementary facts about e.f.v. func-
tions.
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// B \\ v
(TN
NEPERN]
\\\'Z, / \\wc/ . //c:»
(A) A chain in (X, d) (B) A circular chain in (X, d)

PrOPOSITION 3. (i) Let @ : N* — P(N") and ¥ : N* — P(N™) be
e.f.v. functions. Let A : N¥ — P(N™) be defined by:
Ax)= |J ¥(2), VzeN
z€P(x)

Then A is an e.f.v. function.
(ii) Let ® : N¥ — P(N") be e.f.v. and let T C N” be c.e. Then the set

S={zeN|®x)CT}
is c.e.
(iii) If ®, ¥ : N¥ — P(N") are e.f.v. functions, then the sets
{z €NV | ®(z) = U(z)} and {zcN*|®(z) C U(x)}

are computable.

3. CHAINS AND CIRCULAR CHAINS

DEFINITION 3. Let X be aset. Let C = (Cy, ..., Cy,) be a finite sequence
of subsets of X. Then C is said to be a chain in X if for all 4, j € {0,...m}

li—j|>1 < C;nC; =0.
The finite sequence C is said to be a circular chain in X if for all 4,5 €
{0,...m}

1<li—jl<m < C;NC; =0.

If for all 4,5 € {0,...m}

li—jl>1 = C;nC; =0,
we call C a quasi-chain.

For a (circular) chain C = (Cy, ..., Cy,) and anatural number i € {0, ..., m}

we call C; a link of C. If C is a chain, Cy and C,,, are called end links.

If A= (Ap,...,A,) is a finite sequence of bounded nonempty subsets of
(X, d), we define
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mesh(A) = max diam(4;).
0<i<n

Let C be a (circular) chain and € > 0. If mesh(C) < €, we say that C is an
e-(circular) chain.

A (circular) chain in some metric space (X, d) is said to be an open (cir-
cular) chain in (X, d) if each of its links is an open set in (X, d). Similarly,
a (circular) chain (X, d) is said to be a compact (circular) chain in (X,d) if
each of its links is a compact set in (X, d).

REMARK 1. Let X be a set. We note the following:

o Let C = (Cy,...,Cy) be acircular chain. Each link of C is a nonempty
set by definition.

o If Cy is a nonempty set in X, the sequence (Cp) is both a chain and a
circular chain. The same holds for the sequence (Cy, Cp).

e Let m > 2 and C = (Cy,...,Cy,) be a chain in X. We claim: if i # j,
then C; # C;. Namely, if |i — j| > 1, then C; and C; are disjont. Since
they are nonempty, we have C; # C;. If |i — j| = 1, we can without
loss of generality assume ¢ < j. Then ¢ € {0,...m —1},j =i+ L.
Then we suppose the opposite, C; = C; 1. If i < m — 1, then the link
Cit2 intersects the link C;1 = C}, so we have derived a contradiction.
If ¢ = m — 1, then the link C,,_5 intersects C,,—1 = C),, again a
contradiction.

e For nonempty intersecting sets Cp and C; in X, the sequence (Cy, C1)
is both a chain and a circular chain. It easily follows that collections
of two-link chains and two-link circular chains coincide.

e Let C = (Cy,...,Cy) be a sequence of sets in X with m > 2. Then C
can not be both a chain and a circular chain. If C is a chain, then Cj
and C), are disjoint, so C is not a circular chain.

o Let C = (Cy,...,Cy,) be a chain in X. If m < 2, then we say that C
is trivial. If m > 2, we say that C is non-trivial. To summarize: non-
trivial chains cannot be circular, and their links are mutually distinct
sets.

DEFINITION 4. Suppose X is a set, S C X and C = (Cy,...,Cy,) a finite
sequence of subsets of X. We say that C covers S if S C CoU---UCy,. If
a,b € X, we say that C covers S from a to b if C covers S and a € Cy,b € C,,.

Let (K, d) be a continuum. We say that (K,d) is a (circularly) chainable

continuum if for each e > 0 there exists an open e-(circular) chain (Cy, ..., Cp,)
in (K,d) which covers K. If a,b € K, we say that (K,d) is a continuum
chainable from a to b if for each € > 0 there exists an open e-chain (Cp, . .., Cy,)

in (K,d) which covers K from a to b.

We state a well-known fact from [[P18]:
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FicUurE 2. Closed topological sine curve

PROPOSITION 4. [IP18| Proposition 3.3, Proposition 6.11] Let (X, d) be a
continuum. Then (X, d) is (circularly) chainable if and only if for each € > 0
there exists a compact (circular) e-chain in (X, d) which covers X.

REMARK 2. Let (X, d) be a continuum. If X is not chainable, then there
exists g > 0 such that no compact ej-chain covers X. Using the Lebesgue
number lemma, it can easily be seen that then no open ey-chain covers X. If
this is the case, we will say that X is not ep-chainable.

ExXAMPLES 2. Here we list some well-known examples (see CVTT;
Burs9)):

e Closed interval [0, 1] is chainable from 0 to 1, but not circularly chain-
able.

e An arc is a topological space homeomorphic to [0,1]. If A is an arc
and f:[0,1] - A a homeomorphism, then a = f(0) and b = f(1) are
called its endpoints. A is then chainable from a to b.

o The unit circle S! in R? is circularly chainable, but not chainable.

e Topological circles (homeomorphic images of S!) are also circularly
chainable, but not chainable.

e (losed topological sine curve. Let

K = {(:c,sin (;)):0<w§ 1}U{(0,y):y€ ~1,1]}.

Let a = (0,—1), b= (0,0), ¢ = (1,sin1). K is a continuum chainable
from a to ¢. K is not chainable from b to c.

e The Warsaw circle. Let K be the curve from the previous example.
We define W = KU({0} x [-2, =1))U([0, 1] x {—2})U({1} x [-2, sin 1]).
W is a circularly chainable continuum.

e Let us consider the double topological sine curve:



10 D. TARANDEK

L L L L
0.2 0.4 0.6 0.8 1p

FIGURE 3. The Warsaw circle

FI1GURE 4. Double topological sine curve

p={(sin (|3 ) 1ect-rm o} uion e,
and now we add some line segments to construct a closed curve
D'=Du({-1} x [-2,sin1]) U ([-1,1] x {=2})
U ({1} x [-2,sin1]).

Then D’ is a circularly chainable continuum, but it is not chain-
able. Notice that if a = (0,0) and b = (1,sin1) there doesn’t exist a
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subcontinuum of D’ chainable from a to b. Furthermore, if subcon-
tinuum L of D’ is chainable from a = (0,0) to some b € D', then
be {0} x[-1,1].

e A continuum is called decomposable if K = K1 UKs5, where K1 and K>
are proper subcontinua of K. A continuum is called indecomposable
if it is not decomposable. A decomposable continuum K is said to be
2-indecomposable if there exist no subcontinua K7, Ko and K3 of K
such that K = K1 UKs U K3 and K1 € Ko U K3, Ko SZ K71 UKj3 and
K3 € Ky UKos.

A continuum can be both chainable and circularly chainable. Then
it is either indecomposable or 2-indecomposable. In this article, we
focus on circularly chainable, but not chainable, continua.

REMARK 3. Nadler [Nad92] also uses the following terminology for con-
tinua:

e chainable: arc-like,
e circularly chainable: circle-like,
e circularly chainable but not chainable: proper circle-like.

DEFINITION 5 (subchain). Let C = (Cy,...C,,) be a circular chain. For
k.l €{0,...m} we define a following sequence. If k < llet Cx; = (C,...,C}).
Ifk>1let Cry=(Cky...,Cm,Coy...,C1). Ul #k—1and (k1) # (0,m) we
say that Ci; is a subchain of C, and we write C;; < C.

REMARK 4. e Note that for [ = k£ — 1, sequence Cj; is a circular
chain, and therefore not a chain in general. Same holds for (k,l) =
(0,m).

o If | # k —1 and (k,I) # (0,m), then C is a chain.

o Also note that for I # k and m > 3 we have Cy; # C k.

e We can obtain a subchain of C by omitting one of its links. For example,
if 1 < k <m—1, then by omitting Cj, we get (Cit1, Crto,...,Cr—1) =
Criik—1-

e Next we note that for nonempty subset Cy of X, sequence (Cy, Co, Cp)
is a circular chain but not a chain.

e Let m >3 and let C = (Cy,...,C,,) be a circular chain in X. If i # j
then C; # C;. For i € {0,...,m} we omit the link C; to obtain a
chain whose all links are pairwise distinct (by Remark . From this
it follows that all links of C are pairwise distinct.

e Let C = (Cy,...,Cp) be a circular chain in X. If m < 3, we will call
such C trivial, and if m > 3 we will call it non-trivial.

e By omitting a link of a non-trivial circular chain, we obtain a non-
trivial chain.

DEFINITION 6. Suppose X is a set, let C = (Cp,...,Cp) and D =
(Do, ..., Dy,) be sequences of sets in X. If for each i € {0,...,n} there exists
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(A) C2,7 (B) C772

j €{0,...,m} such that D; C C; we say that D refines C. If D refines C and
both Dy C Cy, D,, C C,,,, we say that D strictly refines C.

DEFINITION 7. Let (Cy,...,Cy,) be a sequence of sets in X. We define
the counter-sequence of C:

—C= (CWHOm—ly .. 'aOO)

We note:

e If C is a (circular) chain, then —C is also a (circular) chain.

e For a chain C’ and a circular chain C we have: If ¢’ < C, then —C’ < —C.

e If C is sequence of sets, —(—C)) =C.

Let X be a set and let C = (Cy,...,Cy,) be a sequence of sets in X.
Let links(C) = {Co,...,Cpn}, the set of all links of C. Obviously, links(C) =
links(—C).

LEMMA 1. Let C and D be non-trivial chains such that links(C) = links(D).
Then C =D or C = -D.

PrOOF. Let C = (Cy,...,Cy), D = (Dy,...,D,). From Remark 1| we
conclude that |links(C)|] = m + 1 and |links(D)| = n + 1. From this we
conclude that m = n. We have Cy = D;, for 0 < i < n. We observe that
the only sets that C intersects are itself and C;. Every link D; such that
0 < ¢ < n intersects itself, D;_1 and D;;1. Since D;_1 # D;;1, we conclude
that i =0 or i = n.

If i = 0, we observe that C; intersects Cy = Dy but is itself not equal to
it. The only link of D that intersects Dy other than itself is D;. Therefore
C1 = D;. Similarly we conclude C; = D; for all 0 < i <n, soC="D.

If i = n, we observe that C; intersects Cy = D,, but is not equal to it.
The only link of D that intersects D,, other than itself is D,,_;. Therefore
C1 = Dy—1. Similarly we conclude C; = D,,_; for all 0 < ¢ <n, so C = -D.
0
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DEFINITION 8. Let X be a set and C = (Cy, ..., C,y,) a circular chain in
X. For 0 < k < m we define

C+k = (Cka Ck+17 ey Cma 007 ERE Ck*l)'

In addition, we define C (;,41) = C4o. Informally, the operation C — Cyx
will be refered to as a rotation. The operation C — —C will be refered to as
a reflection. We observe:

(] C+0 = C;
for each 0 < k < m, C1y is a circular chain and links(C) = links(C.);
for a chain C’, if C' <C, then ¢’ < Cyy, for all 0 < k < m;
rotating and then reflecting a circular chain can be obtain by first
reflecting and then rotating it, —Cyr = (—=C)(m—r+1)-

LEMMA 2. Let C and D be non-trivial circular chains such that links(C) =
links(D). Then there exists k =0, ..., m such that C = D4 or C = —Dy.

ProOOF. Let C = (Cy,...,Cp), D = (Dy,...,Dy). Next we define ¢’ =
(Co,...,Cm—1). This sequence is obtained from C by omitting its last link
C),. From Remark [4 we know that such sequence is a non-trivial chain. Then
Cy, = D, for some i € {0,...,n}. We define D’ by omitting D, from D, i.e.
D' = (Dit1,Dit2,...,Dpn,Do,...D;_1). Since links(C') = links(D’), either
=D or(C =-D.

If we look C' = D’ componentwise, we get (Cop,...,Cpm-1) = (Diy1,
Diio,...,D;_1). By appending C,, = D; to the end of the sequences, we
get (OQ, ey Cm) = (Di+1, DH_Q, ceey Dz), i.e. C= D+(i+1)-

If ¢’ = —D’ then we have (Co, ey Om—l) = (Di—h Di_g, cee 71)0, Dn, ey Di+1)~
By appending C,,, = D; to the end of the sequences, we get (Cy,...,Cy,) =
(Difl,Difl,...,Do,Dn,...,Di),i. €. C:_D+Z'. O

REMARK 5. Let C = (Cy, ..., C,y,) be a nontrivial circular chain. Now we
can describe the family of all circular chains D such that links(D) = links(C).
It consists of m + 1 circular chains of the form Cig,k € {0,...,m} (which
are said to have the same orientation as C) and m + 1 circular chains of the
form (=C)1k,k € {0,...,m} (which are said to have the opposite orientation
with regard to C).

PROPOSITION 5. Let (X,d) be a metric space and S C X a circularly
chainable continuum. Then for each open circular chain C that covers S and
each € > 0 there exists a compact e-circular chain D in S which covers S and
refines C.

PrROOF. Let C = (Cy,...,Cy,) be a circular chain that covers S and let
e > 0. Then the set {CoNS,...,C,, NS} is an open cover of S. Since S is
compact, there exists A > 0, a Lebesgue number of this cover. This means
that for each A C S such that diam(A) < A there exists a member of this
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FIGURE 6. Refinement

cover which contains A. By Proposition |4 there exists a compact min{e, A}-
circular chain D = (Dy, ..., D,,) in S which covers S. For each i € {0,...,n},
since diam D; < A, there exists j € {0,...,m} such that D; C C; NS C Cj,
so D refines C. O

Two main results of this section follow, Lemma [3] and Theorem [3

LEMMA 3. Let X be a set, C = (Cp,...,Cp,) a circular chain in X and
ke {l,...,m—1}. Let D = (Dy,...,D,) be a compact circular chain in
X which refines C. Suppose there is a subchain D’ < D whose one end link,
D, is contained in Cp, and other end link is D;, D’ refines (Co,...,Ck_1).
Furthermore suppose there is a subchain D" < D whose one end link, D, is
contained in Cj, and other end link is D;, D" refines (C4,...,Cy). Let D;
and D; intersect. Then there exists a subchain of D which strictly refines
(Co, e Ck) or —(Co, v Ck)

PROOF. We start by observing that either D' = D, ; or D’ = D, ,. Next,
we consider the simple Case I. where D’ = Dy ;. Then we consider Case II.,
with D’ = D, ;, and Case III. D' = D, ,. We reduce Case II. and Case III.
to Case 1.
Case I. Let D' = Dy ;. Subchain D" can then be obtained in two ways:
a) D” = ’DjJ, and b) DN = Db’j.
First, a) D" = D;;. We will now examine subcases dependent on the
position of index b: 1. j <b<mn, 2. b<j<mn, 3. j<b=nand4.
b<j=n.
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FIGURE 7. Subchain addition

1. If j < b < n, we consider Dy, = Dy,...,Dp. In general we can
imagine this sequence as either

A) Dy,...,D;j, Dy, ..., Dy,
B) Dy,...,Di=Dj,..., Dy,
or C) Do,...,Di,Dj,...,Db,

three possibilities depending on the placement of intersecting links D; and
D;. Notice that in such cases each link in Dy is contained in D’ or in D”.
Since D’ refines Cop y—1 and D refines C; j, it follows that Dy refines Co .
Strict refinement follows from the fact that Dy C Cy and D, C (. Since
b < mn, Dy is a subchain of D.

2. If b < j < n, then we consider if b <. If that is the case, then Dy is
a subsequence of Dy ; = D'.

If b > 4, then Dy = (Do, ...,D;, Dy = Dj). Each link of Dy is in D’
except D, = D; which is in D” = D, ;,. Again it holds that each link in Dy 4 is
contained in D’ or in D”. We follow the arguments from the above paragraph
to prove that Dy is a subchain of D that strictly refines Cy .

3. If b = n, we observe that Dy ; is now not a subchain of D. We have
now Dy—, C Cp and Dy C Cy. Since D,, and Dy intersect, so do C} and
Cy. It follows k € {0,1,m}, but by the condition of the lemma only k = 1
is possible. Since D’ refines (Cy,...,Cr_1 = Cp) it follows that D; C Cp.
Similarly, D" refines (C1,...,Cy = C1), so D; C Cy. If D; is contained in Cf,
then one-link chain (D;) refines both Cy and C; and therefore strictly refines
(Co,...Cx=1). If D; ¢ Cy, then D; is not a link of D” = D;,..., Dy, and
then i < j holds. If j =n and ¢ = 0, then (D;, D;) is a subchain of D which
strictly refines —(Cy, ..., C%). Otherwise, (D;, D;) is a subchain of D which
strictly refines (Cy, ..., Ck).
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4. If b < j = n, then D; and D,,—; intersect. Then i € {n—1,n,0} follows.
If i = n—1 then the circular chain D is equal to (Do, ..., Dy, ..., Di—n—1, Dj=p).
Subsequence Dy is a subchain, and links(Dgp) C links(D’), so again it fol-
lows that Dy is the solution. If i = n then D' = Dy ;—=, = D. But D is a
circular chain, which contradicts condition of lemma which states that D’ is
a subchain of D. If i = 0 then D" = (Dj—,, Di—o, ..., Dy). We can see that
Do, is a chain and that links(Dg ) C links(D”).

b) Now, D" = Dy ;. We consider the following subcases: 1. b < j < n,
2. j<b<n,3.b=n,4.b<j=n.

1. b<j<n. If b<i, then Dy is a subsequence of Dy; = D'.

If b > i, then DO,b = (DQ, ...,D;, Dy = DJ)

In both cases each link in Dy is contained in D’ or in D”. Following the
arguments from previous cases, we conclude that Dy ; is subchain of D which
strictly refines Co .

2. If j < b < n first we observe that b # 1. If b = 1, then j = 0 follows.
But then the sequence D" = Dy ; = D is not a subchain of D. Next, we
note that Dy is a subsequence of Dy ; = D”. The fact that b # 1 implies
that Dy is a subchain of D. In addition, Dy strictly refines —(C, ..., C).

3. If b = n, we again conclude that the two-link chain (D,,, D) strictly
refines —Co .

4. If b < j = n, we consider the sequence Dy g = (Dy, ... Dj=pn, Dy). The
links Dy, ...D;—y, are contained in D", and the link Dy is contained in D’.
So, if Dy is a chain, then it is the desired subchain of D. If Dy is not a
chain, then b = 1. Now we have the two-link chain (Dg, Dy=1) which strictly
refines Co .

Case II. If D’ = D, ; then we consider the circular chain
Dig = (Da;Day1, ..., Dar).

e Subchains of D and Dy, coincide. Therefore D’ and D" are subchains
of D+a.

e Furthermore, D' = (D44)0,#.- We have in fact changed the enumeration
of circular chain D so that starting link of subchain D’ has index 0.

e We apply the method from Case I. to obtain subchain &£ of D4,
which strictly refines Cy  or —Co ;. € is the desired solution, since it
is a subchain of D.

Case III. If D' = D; , first we rotate: Dy (441) = (Day1, Daga,- -, Dn,
D(), ey Da). Next we reflect: _D+(a+1) = (Da, Dafl, ey D(), Dn7 N ,Da+1).
‘We note:

o If £ <D, then —€ < =D, (441). This entails that both =D’ and —D”
are subchains of =D (441)-
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FIGURE 8. Strict refinement

e Moreover, =D’ = (=D, (441))o,i7, i.e. we have rotated and reflected
circular chain D, so that D’ again starts with link 0.

e Therefore, by applying method from Case I., we obtain a subchain £
of =D (a+41) such that it strictly refines Co x or —Co -

o If & strictly refines Cy j, then —& strictly refines —Cy . Therefore —&
is a subchain of D that strictly refines Cy ; or —Co .

|

REMARK 6. Notice that the previous lemma holds even without the com-
pactness of D.

THEOREM 3. Let (X, d) be a metric space, S C X a circularly chainable,
but not chainable continuum. Let ¢y > 0 be such that no compact €j-chain
covers S. Let C = (Cy,...,Cy,) be an open circular ej-chain that covers S.
For each compact circular chain D = (D, ..., D,) which covers S and D < C
and for each k € {2,...,m — 1}, there exists a subchain D’ of D such that D’
strictly refines (Cy,...,Ck) or —(Cy,...,Ck).

PROOF. First we fix arbitrary D which covers S and refines C, then we
fix arbitrary k € {2,...,m — 1}. Let us suppose the following:

(*)  no subchain of D strictly refines (Cy,...,Cy) or — (Co,...,Ck),

and derive a contradiction.

Let us consider the set A of all i € {0, ...n} that are connected to Cy, i.e.
such that there exists a subchain D’ of D in which one end link is D;, and the
other is contained in Cy and D’ refines (Cy, ..., Ck_1). Similarly, let B be a
set of all ¢ € {0,...n} that are connected to Cj, i.e. such that there exists a
subchain D" of D in which one end link is D;, and the other is contained in
C and D" refines (Cy,...,Ck).
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Now let

/

= U D;
i€B
D;CCy

Ch = U D;

i€B

D;CCr-1
!
Ck} - U Di
D;CCk
/
Digcnl
/
Co= U b
D;CCy

- U »
€A
D;CC

o1 = U D,
€A
D;CCk-1

Let us consider the sequence of sets C' = (C1,...,C},...,Cl,, CH,CY,....,CY_ ).
After noting that some of this sets might be empty, we claim that the sequence
a) covers S, b) is a quasi-chain.

a) We will prove that D refines C’. Then, since D covers S, so does C'.
Let us choose arbitrary D;, for i € {0,...,m}. Since D refines C, D; C
CoU---UCy,. If D; is contained in one of the sets Cy,...,C,,, Cy, then by

definition D; is contained in one of the sets C},...,Cy,, C.
If D; isn’t contained in one of the sets Cy,...,C,,, Cy, then it must be
contained in one of the sets Cq,...,Cr_1. In this case it will follow that

i € Aori € B. Note that there exists a link of D which isn’t contained
in Cy U---UCk_y. Otherwise D refines (Cy,...,Ck_1). Since D covers S,
so does (C1,...,Ck—1). But then S is covered by an open €p-chain. Using
the Lebesgue number lemma, we can easily construct a compact €g-chain
that covers S. This is in contradiction with assumption that S can not
be covered by a compact €p-chain. Notice that if D; is contained in one
of the sets C1,...,Ci_1, then D, is either also contained in one of the
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FIGURE 9. Links of C’

sets C1,...,Ck—1, or Dj;1 C Cp or Dji1 € Ck. Therefore there exists
1 €40,...,m} such that (D;,...D;_1) refines (Ci,...Ck_1) and D, C Cy or
D, C Ck.

o If D; C Cy, then (Dy,...,D;_1,D;) refines (Cy,...,Cr_1), one end
link is D;, and the other end link, Dy, is contained in Cy. Therefore
i € A. It follows that D; is contained in one of the sets C{,...,C}_;.

e If D; C Cy, then (Dy,...,D;_1, D;) refines (Cy,...,C}), one end link
is D;, and the other end link, D, is contained in C}. Therefore i € B.
It follows that D; is contained in one of the sets C1,...,C}_;.

b) Now let us see that (Cf,...,C},...,C,,C,CY,...,C{_,) is a quasi-
chain. Let B={C{,...,C,,_,}, € ={C},...,C],,.Ci}, A={CY,....,C//_,}.
First we choose two non-neighbouring links from same family, for instance
C}, C} € B. Since by their definition C] C C;, €} C C}, and C; and Cj being
disjoint, C! and C’j’- must also be disjoint. Similarly, one concludes that two
non-neighbouring links are disjoint if they are both in £ or both in A.
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Now let us observe two non-neighbouring links where one is in B and the
other in £. We conclude that the only nontrivial possibility are sets C} and
C{,. Now, let us suppose that they aren’t disjoint i.e. there exists z € C{NC}.
That means that there exist ¢ € B and j € {0,...,m} such that x € D; C (4
and z € D; C Cy. So, to summarize, one-link chain (D;) refines Co —1, there
exists a subchain of D which refines C; ;, whose one end link is in C}, and the
other end link D; intersects D;. By applying Lemma [3] it follows that there
is a subchain of D which strictly refines (Cy,...,C) or —(Co,...,Cyk), so we
have derived a contradiction with (¥). So C{ and C} are disjoint.

If we observe two non-neighbouring links where one is in £ and the other
in A, we can see that only nontrivial possibilities are C} and C}_;. We
proceed as in the previous paragraph.

If we take two non-neighbouring links where one is in B and the other
in A, we can see that only nontrivial possibilities are CJ,, C!/ such that C,
and C, intersect. Let us suppose that C! and C! intersect, so there exist
i€ B,je Aand z € X such that t € D; C C, and x € D; € C,. So
there is a subchain of D which refines Cy 1, whose one end link is in Cj and
the other is Dj, there also exists a subchain of D which refines C; ;, whose
one end link is in C}, and the other end link D; intersects D;. By applying
Lemma [3] it follows again that there is a subchain of D which strictly refines
(Co,...,Ck) or —(Cy,...,Ck), so we have derived a contradiction. So C!, and
C} are disjoint.

So by now we have proven that C’ is a quasi-chain which covers S. By
construction, C’ refines C, so C’ is an eg-quasi-chain. By removing empty links,
we construct a compact €p-chain which covers S. But this is in contradiction
with our assumption that no compact €p-chain covers S. Therefore we must
reject @, so there exists subchain D’ of D such that D’ strictly refines Co
or —Co k.

4. FORMAL CIRCULAR CHAINS

Let (X, d, @) be a computable metric space and let a € X be a computable
point in this space. Using Proposition |2 it is easy to conclude that the set
{i e N|a € I} is ce. From this it follows that the set {j € N |a € J;} is
also c.e. Consequently we have the following proposition:

PROPOSITION 6. Let (X, d, &) be a computable metric space and let a € X
be a computable point in this space. Then

{lEN‘aEJ(l)O}

is a c.e. set.
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DEFINITION 9. Let (X, d, @) be a computable metric space and let v, w €
N. We say that I, is formally contained in I, and we write I, Cp I, if
d(Avs Aw) + po < pu-

Let a,b € N. We say that J, is formally contained in J, and we write J, Cp Jp
if
for each u € [a] there exists v € [b] such that I, Cp I,.

REMARK 7. Note that I, Cg I, denotes a relation between the indeces
u and v, not between the sets I,, and I,,. The same holds for J, Cg Jp.
If I, Cg I, then I, C I,. Therefore J, Cg J, implies J, C Jp.

PROPOSITION 7. Let (X,d, «) be a computable metric space. Then
A={(u,w) eN* |1, C I}
is a c.e. set.
PROOF.
(u,v) € A <= d(Au, \o) + pu < po,
and now we apply Proposition 0
DEFINITION 10. Let (X, d, ) be a computable metric space and let i, j €
N. We say that I; and I; are formally disjoint, and we write I; o I; , if
d(Xis Aj) > pi+ pj-
Let a,b € N. We say that J, and J, are formally disjoint, and we write J, < Jp,
if
I;o1;, forevery i€ [a] and j € [b].
REMARK 8. Formal disjointness is not a relation between the sets I; and
I;, but between the indeces 7 and j. The same holds for J, ¢ Jj.
If I; o I;, then I; N I; = (. Consequently, J, ¢ J, implies J, N Jp, = 0.

The following proposition easily follows from Remark [7] Remark [8] and
the fact that in a computable metric space Cl(J;) C J; holds.

PROPOSITION 8. Let (X, d, «) be a computable metric space and let a, b €
N. Then the following implications hold:
Jo Cr Jy = Cl(Ja) C b,
JooJy = Cl(J,) NClL(Jp) = 0.
DEFINITION 11. Let (X,d,«) be a computable metric space. Let [ € N.
We define
Hl = (J(l)oa ey J(Z)T)
We say that [ represents a formal circular chain or, shortly, that H; is a
formal circular chain if for all 4,5 € {0,...1}
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L<l|i—jl<l = Ju,oJu

U= U 7.
ke(l]

Using propositions [I] 2] and [3] it is not hard to prove the following propo-
sition. For details, see |Ij09, Proposition 8] and [I1j13, Proposition 5.4.].

it

We define

PROPOSITION 9. Let (X, d, «) be a computable metric space. The follow-
ing sets are c.e.:
{(i,7) e N* | Lo I},
{(a,b) e N* | J, 0 Jp},
{(a,b) eN* | J, Cr b},

{l € N| H, is a formal circular chain}.
By [Ij13| Proposition 5.3.] we have:

PrROPOSITION 10. Let K be a semicomputable set in a computable metric
space (X, d,«). The set
{leN|K c|JH}

is c.e.

REMARK 9. Let ¢g > 0 and let K be a circularly chainable, but not
eo-chainable, continuum in a computable metric space (X,d,a). Let [ € N
be such that H; is a formal circular chain which covers K and such that
fmesh(l) < €. Then (Jg,), N K, .. ~7J(ly)§ N K) is a circular chain in K.
Namely, non-neighbouring links do not intersect because H; is a formal cir-
cular chain. Neighbouring links intersect because otherwise there would exist
an €y chain in K covering K, which contradicts the fact that K is not -
chainable.

DEFINITION 12. Let (X, d, «) be a computable metric space. Let [,n € N.
We say that H; formally refines H,, and we write

Hl S Hny

if for all 4 € [I] there exists j € [n] such that J; Cp J;.
Similarly, we say that (Ju,,...,Jq,) formally refines (Jp,,...,Jp,) if for
each i € {0,...,k} there exists j € {0,...,l} such that J,, Cp J,.

DEFINITION 13. Let (X, d, @) be a computable metric space. Let [, k, k' €
N. We write
MY < H
if the following holds:
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o Hy < H,,
® (Ju)s--»Jary,, ) formally refines (Jigy,,- -, Jay, ),
* Jun, SF Juye, Jur,, SF Juy,-

DEFINITION 14. Let (X, d, ) be a computable metric space and let A C
X,j €N and r > 0. We are going to write

AC, J;
if the following holds:
ACJj,
ILiNnA#£0Q, foreachice€ [j],
pi <, foreach i€ [j].
DEFINITION 15. Let (X, d, @) be a computable metric space, let A, B C X

and r > 0. We say that the number r is an (A, B)- separator if for all 4,5 € N
the following implication holds:

(A C, J;and B C, JJ) — JiOJj.

DEFINITION 16. Let (X, d, ) be a computable metric space, let K be a
compact set in (X, d), suppose r > 0 and let a € N. We say that the number
ris an (K, a)- augmentator if for each j € N the following implication holds:

KQTJJ» - Jj Cp J,.

REMARK 10. Note if A, B are compact sets in (X,d), r is an (A, B)-
separator and 1’ € (0,7), then ' is also an (A, B)- separator. Similarly, if r is
a (K, a)-augmentator and r’ € (0, r), then 7’ is also an (K, a)- augmentator.

Here we state four useful results: Lemmal[d] Proposition [T} Lemma [5] and
Proposition The proofs can be found in [IP18, Lemma 4.8. - Proposition
4.13.].

LEMMA 4. Let (X, d, a) be a computable metric space, let K be a nonempty
compact set in (X, d) and let » > 0. Then there exists I € N such that K C,. J;.

PropoOSITION 11. Let (X,d,a) be a computable metric space and let
A, B be disjoint nonempty compact sets in (X,d). Then there exists r > 0
such that r is an (A, B)-separator.

LEMMA 5. Let (X, d,«) be a computable metric space, let A C X,j € N
and r > 0 such that A C, J; . Then

fdiam(j) < diam(A) + 4r.

PROPOSITION 12. Let (X, d, «) be a computable metric space, let a € N
and let K be a compact set in (X, d) such that K C J,. Then there exists
r > 0 such that r is an (K, a)-augmentator.
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LEMMA 6. Let (X,d,a) be a computable metric space. Let K be a
nonempty finite collection of nonempty compact sets in (X,d). Let A be
a finite subset of N and € > 0. Then for every K € K there exists ix € N
such that for all K, L € IC,a € A the following holds:

1. K g JiK§

2. KNL=0 = JiKOJiL;

3. KCJy = Jip CF Ju;

4. fdiam(ix) < diam K + €.

PRrOOF. We define A = {(K,K') | K,K' € K,K N K' = (}. By Proposi-
tion [11]for every (K, K') € A there exists kx> 0 which is a (K, K')— sep-
arator. If A = () we define ug = 1, otherwise ug = min{ux x| (K, K') € A}
(existence of the minimum follows from the finiteness of K).

Next, we define I' = {(K,a) € K x A | K C J,}. By Proposition [12| for
each (K, a) € I there exists u o, which is an (K, a)-augmentator. If I' = () we
define p4 = 1, otherwise pua = min{ug o | (K,a) € T'}. Finiteness of K and
A implies the finiteness of I, which ensures the existence of the minimum.

Now we set u = min{ug, a,€/8}.

1. By Lemma@ for each K € K there exists ¢x € N such that K C,, J;,..

2. Let K, L € K be disjoint. Then (K, L) € A, so p is a (K, L)-separator.
Since K C,, J;, and L C,, J;,, we have that J;, ¢ J;, follows.

3. Let K € K,a € A be such that K C J,. Then (K,a) € T and p is an
(K, a)-augmentator. Now K C,, J;, implies J;,. Cp J,.

4. We know from Lemma [5| and from K C, J;, that fdiam(ix) <
diam K + 4p. Then fdiam(ix) < diam K +4 - ¢/8 < diam K + e.

d

LEMMA 7. Let (X,d,«) be a computable metric space. Suppose S is a
circularly chainable continuum with a € S. Let n € N such that S C UH,,.
Let € > 0. Then there exists [ € N such that:

1. S CH;

2. H; is a formal circular chain;

3. fmesh(l) < ¢;

4. H; < Hn;

5. a € J(l)o-

PRrOOF. The set links(Hn) = {J(n)os---»J(n),} is an open cover of S in
(X,d). Therefore, {J(;,),NS, ..., J(n), NS} is an open cover of S in (S, d|sxs).
There exists A > 0 which is the Lebesgue number of this cover, i.e. for every
A subset of S such that diam A < A there exists ¢ € {0,...,7} such that

Let £ = (Ko, . .. K,,) be a compact min{¢/2, A}-circular chain in S which
covers S. Such circular chain exists because of Proposition @] If a € Ky, then
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we proceed. If a € K; for some i > 0, now we rotate K and notice that now a
is contained in the zeroth link of K ; Without loss of generality we proceed
with denoting KC;; by K.

Since diam K; < A, for each i € {0,...,m} there exists w; € {0,...,7n}
such that K; C J,),, . Now we can apply Lemma@with K={Ko,...,Kn},
A = [n] and the parameter €/2. For each K; € K we denote the corresponding
ix, by kj. There exists I € N such that (()o,...,(l);) = (ko,...,kn). Now,
Hi = (Jkgy--- Ik, )-

1. For each i € {0,...,m} we have K; C Ji,. Since K covers S, so does
H.

2. Let u,v € {0,...,m} such that 1 < |u —v| < m. Since K is a circular
chain, K, and K, are disjoint. Then by Lemma@ Ji, © Ji, , therefore
H; is a formal circular chain.

3. By Lemmal@] for every i € {0,...,m}, fdiam(k;) < diam K; +¢/2 < e.
Therefore fmesh(l) < e.

4. Let us fix an arbitrary ¢ € {0,...,m}. Since K; C Jn).,,» then again
by Lemma@ Jki © Jny,,» i Hi < Hye

5. By rotation of K, a € Ko C J;),-

|

THEOREM 4. Let (X,d,«) be a computable metric space. Let K be
a circularly chainable continuum in (X,d) and let ¢ > 0 be such that no
compact €p-chain covers K. Let a,b € K such that a # b. Then there exists
I € N such that H; is a formal circular chain which covers K, fmesh(l) <
min{l, e} and a € Jy,,b € Jyy),, where k € {2,... =1}

PRrROOF. Let r = d(a,b). We fix j € N such that KX C J;. Then there
exists n € N such that ((n)o, ..., (n)z) = (j§). Thus K C |JH,, follows.

We apply Lemma [7| with € = min{1, e, 7/4}: there exists [ € N such that
H, is a formal circular chain which covers K with a € J(;), and fmesh(l) < e.

Since H; covers K, we have b € J;), for some k € {0,... ,1}. But we
claim that H; is a circular chain as well. Namely, if there exist neighbouring
links which are disjoint, then there exists an €p-chain which covers K, but
K is not e-chainable. From this it follows |i —j| < lor |i —j| =1 =
Jay, U Jdw, # (). For this reason J(), intersects the sets J),, J(;), and J(l)f'
Let us now assume k € {0,1,1}. Now Jay, and J(), intersect and therefore
d(a,b) < diam(J, U J),) < diam Jgy, + diam J;), < 2e < 3, which is a
contradiction with d(a,b) = r. Therefore k € {2,...,1 —1}. d

Let (X, d, ) be a computable metric space. We fix K, a semicomputable
circularly chainable, but not chainable, continuum in (X,d). Let ¢g > 0 be
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such that no compact eg-chain covers K. Without loss of generality we can
assume that ¢y € Q.
We define the sets I' and 2:

I'={(l,k,I' k') € N* | H;,Hy formal circular chains which cover K,
Hﬁg%ﬁmﬁmm<%mmmmkglygm;

Q= {(I,k) € N? | H; formal circular chain, fmesh(l) < ¢,
Kc|JHn2<k<i-1}

PROPOSITION 13. The sets I and () are c.e.

ProoF. From Proposition |10] and Proposition (1] I we know that {(I,k) €
N? | K C U#H;} is c.e. Similarly, using Propositions |§| and |1 we know that
{(I,k) € N2 | H,; a formal circular chain} is c.e. The set {(I,k) € N? |
fmesh(l) < €} is c.e. due to Proposition 2} The fact that {(I,k) € N? |
2<k<]— 1} is computable and therefore c.e. is obvious. The set € is an
intersection of c.e. sets and therefore c.e.

We similarly conclude for I'. The only challenging part is to prove that
{(I,k, 1K) € N* | HE < HF} is ce. We first prove that Ty = {(I,I') €
N? | Hy < H;}is ce. The set {(I,i,',5) € N* | J; Cr Jjand j € [I]} is
c.e due to Proposition [0 and Proposition But then, using Proposition
so is T'y = {(l,4,I') € N* | 3j € N such that J; Cr J; and j € [l]}. We then
conclude:

(I,I'"Y ey < Vie[l'l3j €[] such that J; Cp J;
< Vie[l'l| (1,i,l') €Ty
= {(l,i,l') e N*| i€ ']} CTo.

The function ® : N? — P(N3), &(,1') = {(1,i,I') € N® | i € [I']} is an e.f.v.
function. Then (I,I') € Iy <= ®(1,I') C I's. It follows from Proposition 3]
that I'y is c.e. We proceed similarly with {(I,k,I', k") € N* | (Juryys .-, Ja),,)
formally refines (J(y,,...,Jqu),)}, and conclude that I' is c.e.

d

PROPOSITION 14. For every (I, k) € Q there exists (I, k') € Q such that
(L,k,I',K)eT

PROOF. Let us fix an arbitrary (I, k) € Q. Now, H; = (Ju,, .- -, J),) is
a formal circular chain which covers K, and 2 < k <1 — 1,fmesh(l) < €. Let
m=1and C = (Cy,...,Cp) = (J(Z)O,...,J(l)l,). Now C is a circular chain
which covers K and mesh C < ¢y. We choose some compact circular chain &=

(Eo,...,Ey) in K which covers K such that & < C and mesh € <  fmesh(1)
(this is possible due to Proposition [j) '
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By Theorem [3| there exists a subchain & of £ which strictly refines
(Co,...,Ck) or =(Cy,...,Cf). We have &' = &, ,,. Our goal is to align 1) the
orientation and 2) the starting link of & with (Cy,...,C%). More precisely,
we seek a circular chain D = (Dy, ..., D,) such that links(D) = links(E) and
its subchain D’ = Dy s such that links(D’) = links(£’) and D’ refines Co
with Dy C Cy, Dyr C C, for some k' < n — 1. That way we keep the strict
refinement of the subchains, but we gain more control over their orientations.

1) If E, C Cy and E, C Cy, we proceed with D = £. If E, C Cy and
E, C Ck, then we note that —&’ < —&, so without loss of generality we
proceed with D = —€.

2) Without loss of generality we can put D' = (Dy,..., Dy) for some
k' <n—1. Else, if D' = D,,,, for some u # 0, we consider the circular chain
Dy, instead of D and note that D’ = (D)o, for some k' <n — 1.

Now we apply Lemma |§| with K = {Do,...,Dp}, A = {(D)o,...,();}
and € = ; fmesh(l). For each i € {0,...,n} there exists j; € N such that
D; C Jj,. We can now find I’ € N such that ((I')o,..., (")) = (Jos-- -+ Jn)-
Then Hy = (J(l/)ov-“aJ(l’)r,) = (Jjo,.--,Jj,). Since D covers K, so does
Hy. If we choose a,b € {0,...n} such that 1 < |a — b| < n, then D, N
Dy = 0, and by Lemma [6] J;, ¢ Jj,, i.e. Hy is a formal circular chain. For
each i € {0,...,n} there exists w; € {0,...,1} such that D; C Jay.,, and
therefore, by Lemma |§| Jan, CF J(l)wi, so we have Hy < H;. Next, we note
that fdiam(j;) < diam D; + € < § fmesh(l) + 1 fmesh(l) = 1 fmesh(l), hence
fmesh(l’) < 3 fmesh(l). This entails fmesh(l’) < €.

We know that (Do, ..., D)) refines (Cy,...,Cy) with Dy C Co, Dy € Cy,
and we want to show that (Jqr,, ..., Ju),,) formally refines (Jqy,,- .-, Juy,)
with Jao €F J1yos J(l’)k/ Cr Juy,- By Lemma@Do € Juy, and Dy C Jay,,
imply J»y, Sr Jay, and Jury,, Cr Jgy,- Let i € {0,...,k'}. By refinement,
there exists w; € {0,...,k} such that D; C Jg), . That implies J), Cr
Jy.,, - Therefore ’Hlk,/ < HF and we have proven (I,k,l', k') € T.

To prove (I',k') € Q it remains to show that 2 < k' < I’ — 1. We note
that Jq), N Jy, = 0 because of 2 < k < [ — 1. But now, as mentioned,
Jae CF Jyo and;](l/)k/ Cr J(, holds. We conclude Jano Ny, = () and
therefore 2 < k' <" —1 and (I',k') € Q.

Here we state a well-known result from computable analysis:

PROPOSITION 15. [IP18, Proposition 5.2.] Let k € N\ {0},7 € N* and
a € T. Suppose ¢ : T — N¥ is a partial recursive function such that o(T)CT.
Let f: N — N* be the function defined by

f0)=a, fly+1)=0(f(y)).
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FIGURE 10. Recursive refinements

Then f is computable.
Here we state a useful auxilary result. Its proof can be found in [I1j09)].

LEMMA 8. [[j09, Lemma 41.] Let (X, d) be a metric space which has
compact closed balls. Let C¥ = (CE,.. ., C,’?,Lk), k € N be a sequence of open
chains such that CI(C5T), ..., CI(C,’;‘:L )) strictly refines (C§,...,C¥ ), and
mesh(C*) < 27% Vk € N. Let

S= () (CUCFT) U --UCHCH! ).

M1
keN
Then S is a continuum chainable from a to b, where a € (N, oyCh,b €
nkeN Cflflk '
Before the main theorem, we state another useful result:

LEMMA 9. [IP18, Lemma 6.6.] Let (X, d, &) be a computable metric space
and let S be a nonempty compact set in (X, d). Suppose there exists a com-
putable function f : N — N such that, for each k € N, fmesh(f(k)) < 27%,8 C
UM s and each of the sets in the finite sequence H s intersects S. Then
S is a computable set.

THEOREM 5. Let (X,d, a) be a computable metric space. Suppose K C
X is a circularly chainable, but not chainable, semicomputable continuum.
Let a,b € K such that a # b. Then for every ¢ > 0 there exist computable
points @', b’ € K such that d(a,a’) < ¢,d(b,b’) < € and a computable subcon-
tinuum L of K chainable from a’ to b'.

PROOF. Let € > 0.
By Proposition [13| we have that I and ) are c.e. By Proposition [14] we
have that for every (I, k) € Q there exists (I, k') € Q such that (I,k,I'K') € T.
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It follows from Proposition [1| that there exists a partial computable function
¢ : Q0 — R? such that ¢(Q) € Q and (I, k, (I, k)) € T for each (I,k) € Q

We should note that by Theorem 4] there exists (lo, ko) € © such that
fmesh(lp) < min{1, e}, a € Jy,),,b € J(10)x, - Therefore we can apply Proposi-
tion [15| and introduce a computable function f : N — N? such that

f(0) = (lo, ko), fly+1)=w(f(y))-

Next, we introduce the componentwise notation of the function f: f(y) =

(ly, ky). Wenote that f(y) € Q holds for every y € N. Therefore (f(y), ¢(f(y)))

€T for every y € N. By definition of f this implies (f(y), f(y+ 1)) € T, and

then (Iy, ky,ly+1, ky+1) € T for every y € N. By definition of I' we then have

'Hl vt < ’Hijﬁ for every y € N. We also claim that fmesh(l,) < 27%,Vy € N.

Namely, that follows from fmesh(ly) < 1 and fmesh(ly41) < 1 fmesh(l,).
Next, we fix y € N. We define:

CY = (Cg,,C%y) = (J(ly)o ﬁK,...7J(ly)ky ﬁK).

We try to see if conditions of Lemma [§] are met.
We claim that C¥ is a chain in K. Namely, from Remark [0l we know that
(Ja,yo NK, ..., J(ly)rﬂK) is a circular chain in K. Hence CY is its subchain.
Y

Next, we claim that

Cl(CYTY), ... CI(CYHL ) refines CY,

My+1
with CI(C§™) C Cf, eyt yccy, .

To prove this, first we apply Proposition |8 to 7—[1;’: < HZy to establish that
(Cl(Jq

(Iy+1) o) CI(J(lerl)k 1 )) refines (J(ly)ov ey J(ly)ky )
Because of this now
(Cl(J(ly_H NK,..., Cl(‘](ly+1)ky+1 ) N K) refines (J(ly)() nNK,..., J(ly)ky NK).

Now we use the simple topological fact CI(AN K) C Cl(A) N K to conclude

(Cl(J(ly+1 Yo K),..., Cl(‘](lwl)kwl N K)) refines (‘](ly)o nNK,..., J(ly)ky NK),
from which CI(C¥™), .. .CL(CYL ) refines CY is evident.
Similarly, we conclude that C1(J, , ,),NK) € J,),NK and Cl(Jq, ), e

: 1
K) € Ju,),,NK. This, by definition of C¥, entails Cl(CYT!y € OY and CI(C}#‘L)
cay,
By Lemma [8| we have obtained a continuum
L=((@cgthu---ucyckt! ),

Mk41
keN
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chainable from a’ € oy CF to V' € ey CF,, . By construction, L C K,
so L is a subcontinuum of K. Next we notice that since a,a’ € J(10)o and
fmesh(ly) < ¢, d(a,a’) < e follows. Similar holds for d(b,V’) < e.

To prove that a’ and b’ are computable points first we fix y € N. Then
a’ € Ju,),- Theset Jg ), is the union of rational balls I, where k € [(l,)o].
We can explicitly write one such k, namely k& = ((I)0)o. The center of this
Iis A((1,)0)0 18 also contained in J,y,. Since fmesh(l,) < 27Y, this entails

d(a’s A, )000) <27,
or, by definition of function A,

d(d’s ar, ((1,0000)) <277

Hence o’ is a computable point, and similar argument can be brought forth
for v'.

Now it is sufficient to prove that L is computable. We know that L C
Ja,) YU J(ly)ky,Vy € N. For each y € N there exists w € N such that

(wos -, (W) = ((ly)o, - - -+ (ly)k, ). The set
{(y7w) € N? I ((w)07 sy (w)U) = ((ly)07 SRR (ly)ky)}

is computable. Therefore there exists a computable function f : N — N

such that ((f(y))o, .- -, (f(y))m) = ((Iy)os- -+, (Iy)x, ), for all y € N. Then

L € JHy), Yy € N. For any given y € N we know that .Ji¢(,)), and J(f(y))m

intersect L, since a’,0’ € L. But, since L is connected, every link of H(,
intersects L, otherwise there would exist a separation of L. Then by Lemma
[ L is computable.

|

REMARK 11. First we note the most important part of the result: Theo-
rem [5| ensures the existence of computable subcontinua of a semicomputable
circularly chainable, but not chainable, continuum K.

One might wonder whether we have succeeded to approximate some semi-
computable continuum with these computable subcontinua. The answer is
that this result guarantees no such thing, because there is no obvious can-
didate for the semicomputable continuum being approximated. One such
candidate might be K itself, but here we restate the fact that the topological
properties of K ensure that it is computable as well. Any possible approxi-
mations are then not useful. We should also note that while there is a sub-
continuum L of K chainable from a’ to ¥/, there need not be a subcontinuum
of K chainable from a to b (see Example [2).

Instead, what we can approximate is any pair of given points a and b on
K with computable points on a’ and & on K. On top of that, there exists a
computable subcontinuum L of K chainable from a’ and ¥'.
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L)

FiGUre 11. Computable intermediate value theorem

5. COMPUTABLE INTERSECTION POINTS

Our final result is motivated by the computable version of the Interme-
diate value theorem. We state it again here:

THEOREM 6. [PR89] A computable function f : [0,1] — R such that
f(0) <0, f(1) > 0 has a computable zero.

REMARK 12. We now make the following observations and try to obtain
a setting for possible generalizations of the theorem.

e Let S be the z-axis, and I'(f) the graph of f. Then I'(f) NS contains
a computable point.

e Let U be the lower and V' the upper half-plane. The graph T'(f)
intersects both U and V.

e T'(f) is a computable subset of R?. It is also a continuum considering
the Euclidean metric.

e This leads us to the following attempt: Suppose K is a continuum in
R? which intersects both U and V. Then K certainly intersects S.
Does

(5.1) K computable =— K intersects S in a computable point

hold?

In general, no! Let f : [0,1] — R be a nonnegative computable
function which has zeroes, but none of them is computable [Speb9|.
Let K =T(f)UT(—f). Then K is a computable continuum, therefore
it intersects S, but none of the points in K NS are computable.

o Some conditions under which holds have been examined in [IP18§].
One such condition is that K is an arc.

We restate this important result for clarity:
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() v

FIGURE 12. No computable intersection points

THEOREM 7. [IP18 Theorem 5.3] Let (X, d, ) be a computable metric
space and let U and V be disjoint c.e. open sets in X. Let S =X \ (UUV).
Suppose K is a continuum in X chainable from a to b, where a € U and
b € V. Suppose K is a computable set and K NS is totally disconnected.
Then K NS contains a computable point.

REMARK 13. A topological space X is said to be totally disconnected if
every connected component of X is a one-point set. Note that any nonempty
subspace of X is then totally disconnected as well.

We conclude with the main result of this section:

THEOREM 8. Let (X, d, @) be a computable metric space and let U and V/
be disjoint c.e. open sets in X. Let S = X\ (UUV). Suppose K is a circularly
chainable, but not chainable, continuum in X which intersects both U and V.
Suppose K is a semicomputable set and K NS is totally disconnected. Then
K N S contains a computable point.

PROOF. We choose arbitrary points a € KNU,b € KNV. Since U and V
are open, there exist 71,79 > 0 such that B(a,r1) C U and B(b,r2) C V. Let
e = min{ry, ro}. By Theorem [5| it follows that there exist computable points
a’,b € K such that d(a,a’) < ¢, d(b,b') < € and a computable subcontinuum
L of K chainable from a’ to b'. Note that o’ € LNU,b’ € LNV, and LN S
is totally disconnected. Therefore, following Theorem [2, L N S contains a
computable point, thus K N .S contains it as well. O
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REFERENCES
Izracunljivi potkontinuumi cirkularno lanéastih kontinuuma

David Tarandek

SAZETAK. Ovaj rad istrazuje cirkularno lancaste kon-
tinuume, koji nisu lancasti, u izracunljivim metrickim pros-
torima. Za proizvoljan takav kontinuum K vrijedi da iz nje-
gove poluizrac¢unljivosti slijedi izracunljivost. U literaturi se cesto
proucavaju uvjeti pod kojima poluizracunljivost skupa implicira
njegovu izracunljivost, s naglaskom na topoloska svojstva. Kada
ti uvjeti nisu zadovoljeni, prirodno je istrazivati aproksimativne
pristupe. U ovom ¢lanku fokusiramo se na specifi¢ne izracunljive
potkontinuume od K. Glavni rezultat jest da svake dvije tocke
na poluizracunljivom, cirkularno lan¢astom, no ne i lancastom,
kontinuumu K mozemo aproksimirati izracunljivim tockama tako
da postoji izracunljivi potkontinuum L od K koji ih povezuje.
Posljedi¢no, ako su U i V disjunktni i izracunljivo prebrojivi
otvoreni skupovi u izra¢unljivom metrickom prostoru, pokazu-
jemo da, ako K sijete i U i V, tada njegov presjek s komple-
mentom njihove unije nuzno sadrzi izracunljivu tocku kada je taj
presjek totalno nepovezan.
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