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THE MAXIMUM CARDINALITY OF ESSENTIAL

FAMILIES IN REGULAR OR NORMAL SPACES

LEONARD R. RUBIN

Abstract. Let X be a regular or normal space (T1 not required) with
infinite weight and C be an essential family in X. We will show that
card C ≤ wtX. This implies that every essential family in a separable
metrizable space is countable.

1. Introduction

The Main Result of this paper is Theorem 4.2. It states that if X is a
regular or normal space (T1 not required) with infinite weight and C is an
essential family in X, then card C ≤ wtX. We will give the definition of
an essential family in Definition 3.2(1). It is different from the classical one
(Definition 3.1(1)) in order to accommodate anomalies that occur in spaces
that are not normal. However, it agrees with the classical one for normal
spaces. Let us remark that essential families have provided a useful tool
in the study of dimension, especially for separable metrizable or compact
Hausdorff spaces (see [LR], [Mi], [RSW], [Ru1], [Ru2], [Ru3], [Ru4], [Sa],
[Wa]). We shall explain in Section 3 how one may use our alternate definition
of an essential family to define the dimension of a space.

The inspiration for this research arose in December 2023 when we asked
J. van Mill if a separable metrizable space of (necessarily countable) infinite
weight could have an uncountable essential family. The author then proved
that this was not possible assuming the continuum hypothesis. Subsequently
(in a private communication) van Mill presented a short elegant proof with-
out employing the continuum hypothesis. Our proof is significantly different
from either of those we just mentioned. Corollary 4.4 provides this result
on separable metrizable spaces of infinite weight.

2. Disjoint Closed Pairs

In this paper map will mean continuous function.

Definition 2.1. Let X be a space and (A,B) an ordered pair of subsets of
X. One says that (A,B) is a disjoint closed (open) pair in X if each of
A and B is closed (open) in X and A ∩ B = ∅. A partition P in X of a
disjoint closed pair (A,B) is a closed subset P of X having the property that
X \ P = U ∪ V such that (U, V ) is a disjoint open pair in X, A ⊂ U, and
B ⊂ V .
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In the following when a space X is given and (A,B) is a disjoint closed
(open) pair in X, then we shall frequently omit saying “in X.” Similarly we
shall do the same for a partition P of a disjoint closed pair.

Definition 2.2. For each disjoint closed pair C = (A,B) in a space X, put
C+ = A, C− = B, and C0 = X \ (A ∪B).

Observe that in Definition 2.2, if P is a partition of C, then P ⊂ C0, the
latter being open in X. Lemma 2.3 provides us with a useful characterization
of normal spaces.

Lemma 2.3. Let X be a space. Then X is normal if and only if each
disjoint closed pair has a partition. �

Suppose that X is a space that is not normal, and let C be a disjoint
closed pair that has no partition. Then C+ 6= ∅ 6= C−, for otherwise ∅
would be a partition of C. It is also true that C∗ = (C−, C+) is a disjoint
closed pair that has no partition, and C 6= C∗. Hence, {C}, {C∗}, and
{C,C∗} are “classical” essential families (see [LR], [Sa], and especially that
the property 3.1(1) of Definition 3.1(1) below is fulfilled trivially) in X, and
the latter has cardinality 2. What is more, if C+ 6= ∅ 6= C− and C has
precisely one partition, then the same anomaly also occurs. Hence if one is
attempting to use the classical notion of essential family to define dimension
in such a space X, then a certain distortion arises. On the other hand, if C
has nonempty “parallel” partitions, i.e., nonempty partitions P and S such
that P ∩S = ∅, then the difficulty described above vanishes. This motivates
our Definition 2.4.

Definition 2.4. For each space X, let C(X) denote the set of nonempty
collections of disjoint closed pairs in X. Denote by P(X) the subset of
C(X) consisting of those C having the property that for each C ∈ C either ∅
is a partition of C or C has nonempty partitions P and S with P ∩ S = ∅.

Definition 2.5. Let X be a space and C ∈ C(X). Then by C0 we mean,⋂
{C0 |C ∈ C}.

Lemma 2.6. Let X be a space and C ∈ P(X) (C ∈ C(X)). Then for each
nonempty subset D ⊂ C, D ∈ P(X) (D ∈ C(X)). �

Lemma 2.7. Let X be a normal space and C be a disjoint closed pair such
that ∅ is not a partition of C. Then

(1) C+ 6= ∅ 6= C−,
(2) every map f : X → [0, 1] having the property that f(C+) ⊂ {0} and

f(C−) ⊂ {1} is surjective,
(3) there exists a map f : X → [0, 1] enjoying the properties that f(C+) =
{0} and f(C−) = {1}, and

(4) there exist nonempty partitions P, S of C with P ∩ S = ∅, such that
for all x ∈ C0, there are an open subset Ux of X such that x ∈ Ux ⊂
clX Ux ⊂ C0 and an element R ∈ {P, S} with clX Ux ∩R = ∅.

Proof. If either C+ = ∅ or C− = ∅, then ∅ is a partition of C in violation
of our hypothesis. So (1) holds. Let f : X → [0, 1] be a map as in (2).
Applying (1), we get f(C+) = {0} and f(C−) = {1}. If f is not surjective,
then there is 0 < x < 1 with x /∈ im(f). Thus ∅ = f−1(x) is a partition of
C, which is impossible. This gives us (2). Of course (3) is true by Urysohn’s
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Lemma and (1). To prove (4), use (3) and (2) to get a surjective map
f : X → [0, 1] having the property that f(C+) = {0} and f(C−) = {1}.
Then put P = f−1(1/3) and S = f−1(2/3). From this it is easy to see that
(4) is true. �

According to Definition 2.4 and Lemma 2.7(4) we get,

Lemma 2.8. For every normal space X, C(X) = P(X). �

3. Essential Families

Let us first present the definition of an essential family in a space X in
the “classical sense.”

Definition 3.1. Let X be a space and C ∈ C(X). We say that the family C
is

(1) essential in X in the classical sense if for every collection {PC |C ∈
C} of respective partitions PC of C,

⋂
{PC |C ∈ C} 6= ∅;

(2) inessential in X in the classical sense if it is not essential in X
in the classical sense, i.e., if there exists a collection {PC |C ∈ C} of
respective partitions PC of C such that

⋂
{PC |C ∈ C} = ∅ .

Definition 3.2(1) provides us with a new notion of an essential family in
a space. We replace C(X) by P(X). Lemma 2.8, however, shows that for
the class of normal spaces, the concepts are one and the same.

Definition 3.2. Let X be a space and C ∈ P(X). We say that the family
C is

(1) essential in X if for every collection {PC |C ∈ C} of respective
partitions PC of C,

⋂
{PC |C ∈ C} 6= ∅;

(2) inessential in X if it is not essential in X, i.e., if there exists a
collection {PC |C ∈ C} of respective partitions PC of C such that⋂
{PC |C ∈ C} = ∅ .

Lemma 3.3. Let X be a space and C ∈ P(X). If C is essential in X and
C ∈ C, then ∅ is not a partition of C, and there exist nonempty partitions
P and S of C with P ∩ S = ∅. �

Making use of Definition 3.2(1) and taking a cue from Theorem 2.4, Def-
inition 2.5, and Definition 2.6 of [LR], we could make the following “new”
definition of various notions of dimension.

Definition 3.4. Let X be a space. Then,

(1) dimX = −1 if X = ∅;
(2) dimX = 0 if X 6= ∅ and there is no essential family in X;
(3) if n ∈ N, then dimX = n if there exists an essential family C in X

with card C = n, and for every essential family C0 in X, card C0 ≤ n;
(4) X is infinite-dimensional if for all n ∈ N, there exists an essential

family C in X with card C = n;
(5) X is strongly infinite-dimensional if there exists a countably infinite

essential family in X;
(6) X is weakly infinite-dimensional if it is infinite-dimensional and not

strongly infinite-dimensional.
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In relation to Definition 3.4(5), we do not know if there has ever been a
term used to express the “dimension” of a space that has an essential family
of a certain uncountable cardinality ℵ but not one of a cardinality greater
than ℵ. If a nonempty space X has a finite base for its topology, then P(X)
is finite, so dimX is finite. In any event, in this paper we are only going to
study spaces that have infinite weight.

Lemma 3.5. Let X be a space and C ∈ P(X) be an essential family in X.
Then each nonempty subset D ⊂ C is in P(X) and is an essential family in
X.

Proof. By Lemma 2.6, D ∈ P(X). Suppose to the contrary that D is an
inessential family in X; for each C ∈ D, select a partition PC of C having
the property that

⋂
{PC |C ∈ D} = ∅. Now apply Definition 2.4. For each

C ∈ C \ D, let PC be a partition of C. Then,
⋂
{PC |C ∈ C} ⊂

⋂
{PC |C ∈

D} = ∅. This contradicts the fact that C is an essential family in X. �

Lemma 3.6. Let X be a regular or normal space, C be an essential family
in X, and B be a base for the topology of X. Then

(1) for each C ∈ C, there exist nonempty partitions PC and SC of C
with PC ∩ SC = ∅, and

(2) for each C ∈ C and x ∈ C0, there exists Ux ∈ B with x ∈ Ux ⊂
clX Ux ⊂ C0, having the property that for some element RC ∈
{PC , SC}, clX Ux ∩RC = ∅.

Proof. In case X is regular, we get (1) from Lemma 3.3 and obtain (2) easily
from regularity. If X is normal, then apply Lemma 2.7(4) to obtain PC , SC ,
and Ux as needed. �

We now present a technical lemma that shows how one might find con-
ditions on an element C of P(X) for a space X that will show that C is an
inessential family in X.

Lemma 3.7. Let X be a space and C ∈ P(X). Suppose that D is a nonempty
subset of C and for each C ∈ D, RC is a partition of C and BC is a subset
of X with clX BC ⊂ C0 \ RC . If {clX BC |C ∈ D} is a cover of D0, then C
is an inessential family in X.

Proof. Suppose that C is an essential family in X. By Lemma 3.5, D ∈
P(X), and D is an essential family in X.

For each C ∈ D, put C̃ = (C+ ∪ clX BC , C
−). One sees that for each

C ∈ D, C̃ is a disjoint closed pair, and hence, C̃ = {C̃ |C ∈ D} ∈ C(X).

Moreover, whenever C ∈ D, C̃0 ⊂ C0. It follows that C̃0 ⊂ D0. So if x ∈ C̃0,
then x ∈ D0. By hypothesis, {clX BC |C ∈ D} is a cover of D0. So for

some C ∈ D, x ∈ clX BC . But then x /∈ C̃0, which implies that x /∈ C̃0, a

contradiction. This proves that C̃0 = ∅.
Now notice that for each C ∈ D, RC ⊂ C̃0. Therefore,

⋂
{RC |C ∈ D} ⊂⋂

{C̃0 |C ∈ D} = C̃0 = ∅. Hence
⋂
{RC |C ∈ D} = ∅, and by assumption,

for each C ∈ D, RC is a partition of C. So D is an inessential family in X,
and we get a contradiction. �
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4. Main Theorem

First we present our Main Lemma.

Lemma 4.1. Let X be a space with infinite weight. Suppose that

(1) C is an essential family in X,
(2) for each C ∈ C, there exist nonempty partitions PC and SC of C

with PC ∩ SC = ∅, and
(3) for each C ∈ C and x ∈ C0, there are RC ∈ {PC , SC} and an open

subset U of X having the property that x ∈ U ⊂ clX U ⊂ C0 and
clX U ∩RC = ∅.

Then card C ≤ wtX.

Proof. Let B be a base for the topology of X with cardB = wtX. To arrive
at a contradiction to (1), suppose that wtX < card C. Applying Lemma 3.5
we may assume that card C = ℵ where ℵ is the first cardinal with cardB < ℵ.

Consider the following statement:
(∗) For each nonempty subset D ⊂ C with cardD < ℵ, and collections

{RC |C ∈ D} and {BC |C ∈ D} such that for all C ∈ D, RC ∈ {PC , SC},
BC ∈ B, BC ⊂ clX BC ⊂ C0, and clX BC ∩ RC = ∅, it is true that
{clX BC |C ∈ D} is not a cover of D0.

We are going to prove that (∗) is false. This will show that
(∗∗) there exist a nonempty subsetD ⊂ C with cardD < ℵ, and collections

{RC |C ∈ D} and {BC |C ∈ D} such that for all C ∈ D, RC ∈ {PC , SC},
BC ∈ B, BC ⊂ clX BC ⊂ C0, clX BC ∩ RC = ∅, and {clX BC |C ∈ D} is a
cover of D0.

Our reason for accomplishing this is the following. By (1), C is an essential
family in X, so C ∈ P(X). We apply the latter, (∗∗), and Lemma 3.7 to
conclude that C is an inessential family in X, a contradiction. Hence our
proof will be complete if we can show that (∗) is false. We proceed by
assuming the truth of (∗) and in the end, reaching a contradiction.

Use � to denote a well-ordering of C, let Q designate the first element of C
under �, and for each C ∈ C, let C+1 denote the immediate successor of C.
Put DQ = [Q,Q+ 1); then DQ = {Q}, so cardDQ = 1 < ℵ. By (2), PQ and
SQ are nonempty partitions of Q with PQ ∩ SQ = ∅. Hence ∅ 6= PQ ∪ SQ ⊂
Q0. Take x ∈ Q0. Applying (3), we find BQ ∈ B and RQ ∈ {PQ, SQ}
having the property that x ∈ BQ ⊂ clX BQ ⊂ Q0, clX BQ ∩ RQ = ∅, and
{BQ} is not a cover of D0

Q = Q0. Make the trivial observation that for all

{C,C ′} ⊂ [Q,Q + 1) with C 6= C ′, BC 6= BC′ .
Suppose inductively that F ∈ C, Q + 1 � F , and for each C ∈ [Q,F ), we

have chosen RC ∈ {PC , SC} and BC ∈ B such that,
(†1) BC ⊂ clX BC ⊂ C0, and
(†2) clX BC ∩RC = ∅,

in such a manner that
(†3) for all {C,C ′} ⊂ [Q,F ) with C 6= C ′, BC 6= BC′ .
Now ∅ 6= [Q,F ) ⊂ C and card[Q,F ) < ℵ. By (∗) with D = [Q,F ),

{clX BC |C ∈ [Q,F )} is not a cover of D0. Choose x ∈ D0 \
⋃
{clX BC |C ∈

[Q,F )}. Apply (3) to find RF ∈ {PF , SF } and BF ∈ B such that x ∈ BF ⊂
clX BF ⊂ F 0 and clX BF ∩ RF = ∅. Then (†1) and (†2) are true for each
C ∈ [Q,F + 1), and since x /∈

⋃
{clX BC |C ∈ [Q,F )}, (†3) also obtains

when we replace [Q,F ) with [Q,F + 1).
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We have just shown by the method of transfinite construction that for
each C ∈ C, there exist BC ∈ B and that for all {C,C ′} ⊂ C with C 6= C ′,
BC 6= BC′ . Hence the function C 7→ BC from C to B is injective, which is
impossible since cardB < ℵ = card C. �

Applying Lemmas 3.6 and 4.1, we arrive at our Main Theorem.

Theorem 4.2. Let X be a regular or normal space with infinite weight, and
C be an essential family in X. Then card C ≤ wtX.

Applying Theorem 4.2 and Lemma 2.8, we may state the next two corol-
laries.

Corollary 4.3. Let X be a normal space with infinite weight and C be an
essential family in X in the classical sense. Then card C ≤ wtX.

Corollary 4.4. (J. van Mill) Let X be a separable metrizable space of infinite
weight and C be an essential family in X in the classical sense. Then C is a
countable family. �
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