RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI MATEMATIČKE ZNANOSTI

D. Pokaz
Generalized Hardy-type inequality via Lidstone interpolating polynomial and new Green functions
Manuscript accepted for publication

This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. It has not been copy-edited, proofread, or finalized by Rad HAZU Production staff.

GENERALIZED HARDY-TYPE INEQUALITY VIA LIDSTONE INTERPOLATING POLYNOMIAL AND NEW GREEN FUNCTIONS

Dora Pokaz

Abstract

For a given general setting, involving measure spaces with positive σ-finite measures, we present new results regarding Hardy-type inequality. We established a connection between the difference operator obtained from Hardy-type inequality and the expression that includes Lidstone interpolating polynomial and four new Green functions. We discuss about $2 n$ convexity of the function and consider the main result depending on the parity of the part of exponent and index n. Applying Hölder inequality for conjugate exponents p and q we get some consequential results. Finally, we derived bounds for the identity using Čebyšev functional and Ostrowski-type bound for the generalized Hardy's inequality.

1. Preliminaries

The Lidstone series is a generalization of Taylor's series. It approximates a given function in the neighborhood of two points instead of one. In the beginning such series have been studied by G. J. Lidstone (1929), H. Poritsky (1932) and J. M. Wittaker (1934). It was continued by many others. It should be emphasized that Boas made a complete characterization, which was very important from a practical point of view. Apart from approximation theory, applications of this interpolating polynomial can be found in many branches of physical sciences. We start with the definition of the Lidstone series by Lidstone polynomial.

[^0]Definition 1.1. Let $f \in C^{\infty}([0,1])$, then the Lidstone series has the form

$$
\sum_{k=0}^{\infty}\left(f^{(2 k)}(0) \Lambda_{k}(1-x)+f^{(2 k)}(1) \Lambda_{k}(x)\right)
$$

where Λ_{n} is a polynomial of degree $2 n+1$ defined by the relations

$$
\begin{align*}
& \Lambda_{0}(t)=t \\
& \Lambda_{n}^{\prime \prime}(t)=\Lambda_{n-1}(t) \tag{1.1}\\
& \Lambda_{n}(0)=\Lambda_{n}(1)=0, n \geq 1
\end{align*}
$$

Other explicit representations of the Lidstone polynomial are given in [1] and [15],

$$
\begin{aligned}
\Lambda_{n}(t) & =(-1)^{n} \frac{2}{\pi^{2 n+1}} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{2 n+1}} \sin k \pi t \\
\Lambda_{n}(t) & =\frac{1}{6}\left[\frac{6 t^{2 n+1}}{(2 n+1)!}-\frac{t^{2 n-1}}{(2 n-1)!}\right] \\
& -\sum_{k=0}^{n-2} \frac{2\left(2^{2 k+3}-1\right)}{(2 k+4)!} B_{2 k+4} \frac{t^{2 n-2 k-3}}{(2 n-2 k-3)!}, n=1,2, \ldots, \\
\Lambda_{n}(t) & =\frac{2^{2 n+1}}{(2 n+1)!} B_{2 n+1}\left(\frac{1+t}{2}\right), n=1,2 \ldots,
\end{aligned}
$$

where $B_{2 k+4}$ is the $(2 k+4)$-th Bernoulli number and $B_{2 n+1}\left(\frac{1+t}{2}\right)$ is the Bernoulli polynomial.

In [16], Widder proved the fundamental lemma:
Lemma 1.2. If $f \in C^{(2 n)}([0,1])$, then

$$
f(t)=\sum_{k=0}^{n-1}\left[f^{(2 k)}(0) \Lambda_{k}(1-t)+f^{(2 k)}(1) \Lambda_{k}(t)\right]+\int_{0}^{1} G_{n}(t, s) f^{(2 n)}(s) d s
$$

where

$$
G_{1}(t, s)=G(t, s)= \begin{cases}(t-1) s, & \text { if } s \leq t \tag{1.2}\\ (s-1) t, & \text { if } t \leq s\end{cases}
$$

is homogeneous Green's function of the differential operator $\frac{d^{2}}{d s^{2}}$ on $[0,1]$, and with the successive iterates of $G(t, s)$

$$
\begin{equation*}
G_{n}(t, s)=\int_{0}^{1} G_{1}(t, p) G_{n-1}(p, s) d p, n \geq 2 \tag{1.3}
\end{equation*}
$$

The Lidstone polynomial can be expressed in terms of $G_{n}(t, s)$ as

$$
\Lambda_{n}(t)=\int_{0}^{1} G_{n}(t, s) s d s
$$

Based on the article [9] throughout the paper, $\tilde{G}_{\gamma}, \gamma=1,2,3,4$, will denote the following Green functions defined on $[\alpha, \beta] \times[\alpha, \beta]$ with

$$
\begin{align*}
& \tilde{G}_{1}(t, s)= \begin{cases}\alpha-s, & \alpha \leq s \leq t \\
\alpha-t, & t \leq s \leq \beta\end{cases} \tag{1.4}\\
& \tilde{G}_{2}(t, s)= \begin{cases}t-\beta, & \alpha \leq s \leq t \\
s-\beta, & t \leq s \leq \beta\end{cases} \tag{1.5}\\
& \tilde{G}_{3}(t, s)= \begin{cases}t-\alpha, & \alpha \leq s \leq t \\
s-\alpha, & t \leq s \leq \beta\end{cases} \tag{1.6}\\
& \tilde{G}_{4}(t, s)= \begin{cases}\beta-s, & \alpha \leq s \leq t \\
\beta-t, & t \leq s \leq \beta\end{cases} \tag{1.7}
\end{align*}
$$

Note that all these functions are continuous and convex with respect to both variables.

Lemma 1.3. For $\phi \in C^{2}([\alpha, \beta])$, the following identities hold

$$
\begin{align*}
& \phi(t)=\phi(\alpha)+(t-\alpha) \phi^{\prime}(\beta)+\int_{\alpha}^{\beta} \tilde{G}_{1}(t, s) \phi^{\prime \prime}(s) d s \tag{1.8}\\
& \phi(t)=\phi(\beta)+(t-\beta) \phi^{\prime}(\alpha)+\int_{\alpha}^{\beta} \tilde{G}_{2}(t, s) \phi^{\prime \prime}(s) d s \tag{1.9}\\
& \phi(t)=\phi(\beta)+(t-\alpha) \phi^{\prime}(\alpha)-(\beta-\alpha) \phi^{\prime}(\beta)+\int_{\alpha}^{\beta} \tilde{G}_{3}(t, s) \phi^{\prime \prime}(s) d s \tag{1.10}\\
& \phi(t)=\phi(\alpha)-(\beta-t) \phi^{\prime}(\beta)+(\beta-\alpha) \phi^{\prime}(\alpha)+\int_{\alpha}^{\beta} \tilde{G}_{4}(t, s) \phi^{\prime \prime}(s) d s \tag{1.11}
\end{align*}
$$

where the functions $\tilde{G}_{\gamma}, \gamma=1, \ldots, 4$, are defined by (1.4)-(1.7).

2. Introduction

The aim of this article is to give a result related to the general Hardy-type inequality. The classical Hardy inequality from [6] is

$$
\begin{equation*}
\int_{0}^{\infty}\left(\frac{1}{x} \int_{0}^{x} f(t) d t\right)^{p} d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty} f^{p}(x) d x, p>1 \tag{2.12}
\end{equation*}
$$

where f is non-negative function such that $f \in L^{p}\left(\mathbb{R}_{+}\right)$and $\mathbb{R}_{+}=(0, \infty)$. The constant $\left(\frac{p}{p-1}\right)^{p}$ is sharp. Inequality (2.12) was generalized in many ways, see [7], [12] and [13]. Here we refer to settings and generalization from [8].

We begin by defining the settings that we continue to work with. Let $\left(\Sigma_{1}, \Omega_{1}, \mu_{1}\right)$ and $\left(\Sigma_{2}, \Omega_{2}, \mu_{2}\right)$ be measure spaces with positive σ-finite measures and A_{k} be an integral operator defined by

$$
\begin{equation*}
A_{k} f(x):=\frac{1}{K(x)} \int_{\Omega_{2}} k(x, t) f(t) d \mu_{2}(t) \tag{2.13}
\end{equation*}
$$

where $k: \Omega_{1} \times \Omega_{2} \rightarrow \mathbb{R}$ is measurable and non-negative kernel, $f: \Omega_{2} \rightarrow \mathbb{R}$ is measurable function and

$$
\begin{equation*}
0<K(x):=\int_{\Omega_{2}} k(x, t) d \mu_{2}(t), \quad x \in \Omega_{1} \tag{2.14}
\end{equation*}
$$

Throughout the article we will mark the open interval in \mathbb{R} with I. The following result was given in [8].

THEOREM 2.1. Let u be a weight function, $k(x, y) \geq 0$. Assume that $\frac{k(x, y)}{K(x)} u(x)$ is locally integrable on Ω_{1} for each fixed $y \in \Omega_{2}$. Define v by

$$
\begin{equation*}
v(y):=\int_{\Omega_{1}} \frac{k(x, y)}{K(x)} u(x) d \mu_{1}(x)<\infty \tag{2.15}
\end{equation*}
$$

If Φ is a convex function on the interval $I \subseteq \mathbb{R}$, then the inequality

$$
\begin{equation*}
\int_{\Omega_{1}} \Phi\left(A_{k} f(x)\right) u(x) d \mu_{1}(x) \leq \int_{\Omega_{2}} \Phi(f(y)) v(y) d \mu_{2}(y) \tag{2.16}
\end{equation*}
$$

holds for all measurable functions $f: \Omega_{2} \rightarrow \mathbb{R}$, such that $\operatorname{Im} f \subseteq I$, where A_{k} is defined by (2.13) - (2.14).

Now, we start with the generalized Hardy-type inequality (2.16). In the settings where A_{k} is as in (2.13), a weight function u with v given by (2.15) and for $\gamma \in\{1,2,3,4\}$, we consider \tilde{G}_{γ} to be as in (1.4)-(1.7). In addition, for $\phi \in C^{2}([\alpha, \beta])$, identities (1.8)-(1.11) and some simple calculations yield the following statements from [9]

$$
\begin{align*}
& \int_{\Omega_{2}} \phi(f(y)) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \phi\left(A_{k} f(x)\right) u(x) d \mu_{1}(x) \\
= & \int_{\alpha}^{\beta}\left[\int_{\Omega_{2}} \tilde{G}_{\gamma}(f(y), s) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \tilde{G}_{\gamma}\left(A_{k} f(x), s\right) u(x) d \mu_{1}(x)\right] \phi^{\prime \prime}(s) d s . \tag{2.17}
\end{align*}
$$

Additionally, if ϕ is convex, then $\phi^{\prime \prime}(s) \geq 0$ for $s \in[\alpha, \beta]$.
In this article, we consider Lidstone series representation of $\Phi \in C^{(2 n)}([\alpha, \beta])$ as:
$\Phi(x)=\sum_{m=0}^{n-1}(\beta-\alpha)^{2 m}\left[\Phi^{(2 m)}(\alpha) \Lambda_{m}\left(\frac{\beta-x}{\beta-\alpha}\right)+\Phi^{(2 m)}(\beta) \Lambda_{m}\left(\frac{x-\alpha}{\beta-\alpha}\right)\right]$

$$
\begin{equation*}
+(\beta-\alpha)^{2 n-1} \int_{\alpha}^{\beta} G_{n}\left(\frac{x-\alpha}{\beta-\alpha}, \frac{s-\alpha}{\beta-\alpha}\right) \Phi^{(2 n)}(s) d s . \tag{2.18}
\end{equation*}
$$

Further in the article, we will state our results for the class of n-convex functions, a more general class of functions that contains convex functions as a special case. We recall the basic definition and some properties of n-convex functions.

Definition 2.2. The n-th order divided difference, $n \in \mathbb{N}_{0}$, of a function $\phi:[\alpha, \beta] \rightarrow \mathbb{R}$ at mutually distinct points $x_{0}, x_{1}, \ldots, x_{n} \in[\alpha, \beta]$ is defined recursively by

$$
\begin{aligned}
{\left[x_{i} ; \phi\right] } & =\phi\left(x_{i}\right), \quad i=0, \ldots, n \\
{\left[x_{0}, \ldots, x_{n} ; \phi\right] } & =\frac{\left[x_{1}, \ldots, x_{n} ; \phi\right]-\left[x_{0}, \ldots, x_{n-1} ; \phi\right]}{x_{n}-x_{0}} .
\end{aligned}
$$

The value $\left[x_{0}, \ldots, x_{n} ; \phi\right]$ is independent of the order of the points x_{0}, \ldots, x_{n}. A function $f:[\alpha, \beta] \rightarrow \mathbb{R}$ is n-convex if all its n-th order divided differences are non-negative, i. e. $\left[x_{0}, \ldots, x_{n} ; f\right] \geq 0$ for all choices $x_{i} \in[\alpha, \beta]$. Thus, 0 -convex functions are non-negative and 1 -convex functions are non-decreasing, while 2-convex functions are convex in the classical sense. An n times differentiable is n-convex if and only if its n-derivative is non-negative (see [14]).

3. Main result

For settings given in the Introduction we start with our main result involving the Lidstone polynomial.

Theorem 3.1. Let $n \in \mathbb{N}, n \geq 2$ and $\phi: I \rightarrow \mathbb{R}$ be such that $\phi^{(2(n-1))}$ is absolutely continuous and $\alpha, \beta \in I, \alpha<\beta$. Further, let A_{k} be as in (2.13),
$\gamma \in\{1,2,3,4\}, \tilde{G}_{\gamma}$ as in (1.4)-(1.7), Λ_{n} as in (1.1) and u a weight function with v given by (2.15). Then

$$
\begin{align*}
& \int_{\Omega_{2}} \phi(f(y)) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \phi\left(A_{k} f(x)\right) u(x) d \mu_{1}(x) \\
&= \int_{\alpha}^{\beta}\left[\int_{\Omega_{2}} \tilde{G}_{\gamma}(f(y), t) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \tilde{G}_{\gamma}\left(A_{k} f(x), t\right) u(x) d \mu_{1}(x)\right] \\
& \times \sum_{k=1}^{n-1}(\beta-\alpha)^{2 k-2}\left[\phi^{(2 k)}(\alpha) \Lambda_{k-1}\left(\frac{\beta-t}{\beta-\alpha}\right)+\phi^{(2 k)}(\beta) \Lambda_{k-1}\left(\frac{t-\alpha}{\beta-\alpha}\right)\right] d t \\
& \quad+(\beta-\alpha)^{2 n-3} \times \int_{\alpha}^{\beta} \phi^{(2 n)}(s)\left[\int _ { \alpha } ^ { \beta } \left(\int_{\Omega_{2}} \tilde{G}_{\gamma}(f(y), t) v(y) d \mu_{2}(y)\right.\right. \\
&19) \tag{3.19}\\
&\left.\left.\quad-\int_{\Omega_{1}} \tilde{G}_{\gamma}\left(A_{k} f(x), t\right) u(x) d \mu_{1}(x)\right) \times G_{n-1}\left(\frac{t-\alpha}{\beta-\alpha}, \frac{s-\alpha}{\beta-\alpha}\right) d t\right] d s .
\end{align*}
$$

Proof. If we substitute Φ with $\Phi^{\prime \prime}$ and n with $n-1$, then a function Φ defined by (2.18) becomes

$$
\begin{aligned}
\phi^{\prime \prime}(t) & =\sum_{k=0}^{n-2}(\beta-\alpha)^{2 k}\left[\phi^{(2 k+2)}(\alpha) \Lambda_{k}\left(\frac{\beta-t}{\beta-\alpha}\right)+\phi^{(2 k+2)}(\beta) \Lambda_{k}\left(\frac{t-\alpha}{\beta-\alpha}\right)\right] \\
& +(\beta-\alpha)^{2 n-3} \int_{\alpha}^{\beta} G_{n-1}\left(\frac{t-\alpha}{\beta-\alpha}, \frac{s-\alpha}{\beta-\alpha}\right) \phi^{(2 n)}(s) d s
\end{aligned}
$$

which with a little calculation leads to

$$
\begin{aligned}
& \phi^{\prime \prime}(t)=\sum_{k=1}^{n-1}(\beta-\alpha)^{2 k-2}\left[\phi^{(2 k)}(\alpha) \Lambda_{k-1}\left(\frac{\beta-t}{\beta-\alpha}\right)+\phi^{(2 k)}(\beta) \Lambda_{k-1}\left(\frac{t-\alpha}{\beta-\alpha}\right)\right] \\
& (3.20)+\quad(\beta-\alpha)^{2 n-3} \int_{\alpha}^{\beta} G_{n-1}\left(\frac{t-\alpha}{\beta-\alpha}, \frac{s-\alpha}{\beta-\alpha}\right) \phi^{(2 n)}(s) d s
\end{aligned}
$$

Finally, if we include $\Phi^{\prime \prime}$ calculated in (3.20) into (2.17) we get the required result.

Starting from the result of the Theorem 3.1, depending on parity of n we have the following inequalities.

Theorem 3.2. Suppose that $u, v A_{k}, \tilde{G}_{\gamma}, \gamma \in\{1,2,3,4\}$ and Λ_{n} be as in Theorem 3.1. If $\phi: I \rightarrow \mathbb{R}$ is $2 n$-convex, and
(i) n is odd number, then the inequality

$$
\begin{align*}
& \int_{\Omega_{2}} \phi(f(y)) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \phi\left(A_{k} f(x)\right) u(x) d \mu_{1}(x) \\
& \geq \int_{\alpha}^{\beta}\left[\int_{\Omega_{2}} \tilde{G}_{\gamma}(f(y), t) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \tilde{G}_{\gamma}\left(A_{k} f(x), t\right) u(x) d \mu_{1}(x)\right] \\
&.21) \tag{3.21}\\
& \times \sum_{k=1}^{n-1}(\beta-\alpha)^{2 k-2}\left[\phi^{(2 k)}(\alpha) \Lambda_{k-1}\left(\frac{\beta-t}{\beta-\alpha}\right)+\phi^{(2 k)}(\beta) \Lambda_{k-1}\left(\frac{t-\alpha}{\beta-\alpha}\right)\right] d t
\end{align*}
$$

holds.
(ii) n is even number, then the inequality

$$
\begin{align*}
& \int_{\Omega_{2}} \phi(f(y)) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \phi\left(A_{k} f(x)\right) u(x) d \mu_{1}(x) \\
& \leq \int_{\alpha}^{\beta}\left[\int_{\Omega_{2}} \tilde{G}_{\gamma}(f(y), t) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \tilde{G}_{\gamma}\left(A_{k} f(x), t\right) u(x) d \mu_{1}(x)\right] \tag{3.22}\\
&.22) \\
& \times \sum_{k=1}^{n-1}(\beta-\alpha)^{2 k-2}\left[\phi^{(2 k)}(\alpha) \Lambda_{k-1}\left(\frac{\beta-t}{\beta-\alpha}\right)+\phi^{(2 k)}(\beta) \Lambda_{k-1}\left(\frac{t-\alpha}{\beta-\alpha}\right)\right] d t
\end{align*}
$$

holds.
Proof. (i) Since $\tilde{G}_{\gamma}(\cdot, t)$ is continuous and convex with respect to the first variable for each $\gamma \in\{1,2,3,4\}$ and $t \in[\alpha, \beta]$, according to the Theorem 3.1

$$
\int_{\Omega_{2}} \tilde{G}_{\gamma}(f(y), t) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \tilde{G}_{\gamma}\left(A_{k} f(x), t\right) u(x) d \mu_{1}(x) \geq 0
$$

holds for every $t \in[\alpha, \beta]$. On the other hand \tilde{G}_{γ} given by (1.4) - (1.7) are non-negative and so is $\phi^{2 n}$ since ϕ is $2 n$-convex. By definition (1.2) and (1.3) of the function G_{n}, we can see that if n is odd, then G_{n} is not positive. On the other hand, if n is positive, then G_{n} is non-negative. In (3.19) we have
expression containing G_{n-1}. So, if $n-1$ is even, then n is odd and the required inequality (3.21) follows from the statement of Theorem 3.1.
(ii) Similarly, if $n-1$ is odd, then n is even so the inequality (3.22) holds.

Remark 3.3. If we consider the functional

$$
\xi(\Phi)=\int_{\Omega_{2}} \phi(f(y)) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \phi\left(A_{k} f(x)\right) u(x) d \mu_{1}(x)
$$

then for $2 n$-convex function ϕ

$$
\xi\left(\tilde{G}_{\gamma}(\cdot, t) \geq 0, t \in[\alpha, \beta]\right.
$$

holds.
In the next result we consider Hölder inequality for conjugate exponents p and q. As usual we suppose that $1 \leq p, q \leq \infty$ and $\frac{1}{p}+\frac{1}{q}=1$. The symbol $\|\cdot\|_{p}$ denotes the standard $L^{p}([\alpha, \beta])$ norm of a function, i. e.

$$
\|g\|_{p}=\left(\int_{\alpha}^{\beta}|g(s)|^{p} d s\right)^{\frac{1}{p}}
$$

for $1 \leq p<\infty$, while $\|g\|_{\infty}$ is the essential supremum of g.
Theorem 3.4. Let $n \in \mathbb{N}, n \geq 2$ and $\phi: I \rightarrow \mathbb{R}$ be such that $\phi^{(2(n-1))}$ is absolutely continuous and $\phi^{(2 n)} \in L^{p}[\alpha, \beta]$ for $\alpha, \beta \in I, \alpha<\beta$. Further, let A_{k} be as in (2.13), $\gamma \in\{1,2,3,4\}, \tilde{G}_{\gamma}$ as in (1.4)-(1.7), Λ_{n} as in (1.1) and u a weight function with v given by (2.15). If (p, q) is a pair of conjugate exponents, then

$$
\left|S_{k}(\phi)\right| \leq(\beta-\alpha)^{2 n-3} \times\left\|\phi^{(2 n)}\right\|_{p} \times
$$

$$
\begin{equation*}
\left.\times\left. G_{n-1}\left(\frac{t-\alpha}{\beta-\alpha}, \frac{s-\alpha}{\beta-\alpha}\right) d t\right|^{q} d s\right)^{\frac{1}{q}} \tag{3.23}
\end{equation*}
$$

holds, where

$$
\begin{align*}
& \quad S_{k}(\phi)=\int_{\Omega_{2}} \phi(f(y)) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \phi\left(A_{k} f(x)\right) u(x) d \mu_{1}(x) \\
& -\int_{\alpha}^{\beta}\left[\int_{\Omega_{2}} \tilde{G}_{\gamma}(f(y), t) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \tilde{G}_{\gamma}\left(A_{k} f(x), t\right) u(x) d \mu_{1}(x)\right] \\
& 3.24) \tag{3.2.2}\\
& \times \sum_{k=1}^{n-1}(\beta-\alpha)^{2 k-2}\left[\phi^{(2 k)}(\alpha) \Lambda_{k-1}\left(\frac{\beta-t}{\beta-\alpha}\right)+\phi^{(2 k)}(\beta) \Lambda_{k-1}\left(\frac{t-\alpha}{\beta-\alpha}\right)\right] d t .
\end{align*}
$$

Proof. Applying the Hölder inequality on (3.19) considering the notation (3.24), we get

$$
\begin{aligned}
& \left|S_{k}(\phi)\right|=(\beta-\alpha)^{2 n-3} \times \\
& \quad \mid \int_{\alpha}^{\beta} \phi^{(2 n)}\left(\int_{\alpha}^{\beta}\left(\int_{\Omega_{2}} \tilde{G}_{\gamma}(f(y), t) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \tilde{G}_{\gamma}\left(A_{k} f(x), t\right) u(x) d \mu_{1}(x)\right)\right. \\
& \left.\quad \times G_{n-1}\left(\frac{t-\alpha}{\beta-\alpha}, \frac{s-\alpha}{\beta-\alpha}\right) d t\right) d s \mid \\
& \quad \leq(\beta-\alpha)^{2 n-3} \times\left\|\phi^{(2 n)}\right\|_{p} \times \\
& \\
& \quad\left(\int_{\alpha}^{\beta} \mid \int_{\alpha}^{\beta}\left(\int_{\Omega_{2}} \tilde{G}_{\gamma}(f(y), t) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \tilde{G}_{\gamma}\left(A_{k} f(x), t\right) u(x) d \mu_{1}(x)\right)\right. \\
& \left.\quad \times\left. G_{n-1}\left(\frac{t-\alpha}{\beta-\alpha}, \frac{s-\alpha}{\beta-\alpha}\right) d t\right|^{q} d s\right)^{\frac{1}{q}}
\end{aligned}
$$

and obtain the required inequality.
Remark 3.5. As special cases for boundary values p and q, from the inequality (3.23) we get the following inequalities:

$$
\begin{aligned}
& \left|S_{k}(\phi)\right| \leq(\beta-\alpha)^{2 n-3} \times \max \left|\phi^{(2 n)}(s)\right| \times \\
& \quad \mid \int_{\alpha}^{\beta} \int_{\alpha}^{\beta}\left(\int_{\Omega_{2}} \tilde{G}_{\gamma}(f(y), t) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \tilde{G}_{\gamma}\left(A_{k} f(x), t\right) u(x) d \mu_{1}(x)\right) \\
& \left.\quad \times G_{n-1}\left(\frac{t-\alpha}{\beta-\alpha}, \frac{s-\alpha}{\beta-\alpha}\right) d t d s \right\rvert\,
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|S_{k}(\phi)\right| \leq(\beta-\alpha)^{2 n-3} \times \\
& \max \mid \int_{\alpha}^{\beta} \int_{\alpha}^{\beta}\left(\int_{\Omega_{2}} \tilde{G}_{\gamma}(f(y), t) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \tilde{G}_{\gamma}\left(A_{k} f(x), t\right) u(x) d \mu_{1}(x)\right) \\
& \quad \times G_{n-1}\left(\frac{t-\alpha}{\beta-\alpha}, \frac{s-\alpha}{\beta-\alpha}\right) d t d s\left|\times\left|\int_{\alpha}^{\beta} \phi^{(2 n)}(s) d s\right| .\right.
\end{aligned}
$$

4. Applications to the Čebyšev functional

Consider the Čebyšev functional,

$$
T(h, g):=\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} h(t) g(t) d t-\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} h(t) d t \cdot \frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} g(t) d t
$$

for Lebesgue integrable functions $h, g:[\alpha, \beta] \rightarrow \mathbb{R}$. Examples with upper bound obtained using Čebyšev functional can be found in [11]. The next two theorems from [5] provide Grüss and Ostrowski type inequalities involving the above functional.

TheOrem 4.1. Let $h, g:[\alpha, \beta] \rightarrow \mathbb{R}$ be two absolutely continuous functions with $(\cdot-\alpha)(\beta-\cdot)\left(h^{\prime}\right)^{2},(\cdot-\alpha)(\beta-\cdot)\left(g^{\prime}\right)^{2} \in L([\alpha, \beta])$. Then

$$
\begin{equation*}
|T(h, g)| \leq \frac{1}{\sqrt{2}}|T(h, h)|^{\frac{1}{2}} \frac{1}{\sqrt{\beta-\alpha}}\left(\int_{\alpha}^{\beta}(s-\alpha)(\beta-s)\left[g^{\prime}(s)\right]^{2} d s\right)^{\frac{1}{2}} \tag{4.25}
\end{equation*}
$$

The constant $\frac{1}{\sqrt{2}}$ is the best possible in (4.25).
Theorem 4.2. Assume that $g:[\alpha, \beta] \rightarrow \mathbb{R}$ is monotonic non-decreasing and $h:[\alpha, \beta] \rightarrow \mathbb{R}$ is absolutely continuous with $h^{\prime} \in L^{\infty}([\alpha, \beta])$. Then

$$
\begin{equation*}
|T(h, g)| \leq \frac{1}{2(\beta-\alpha)}\left\|h^{\prime}\right\|_{\infty} \int_{\alpha}^{\beta}(s-\alpha)(\beta-s) d g(s) \tag{4.26}
\end{equation*}
$$

The constant $\frac{1}{2}$ is the best possible in (4.26).
To simplify notation, for $\gamma \in\{1,2,3,4\}$ we introduce the abbreviation $R_{\gamma}:[\alpha, \beta] \rightarrow \mathbb{R}$ in the form:

$$
\begin{align*}
& R_{\gamma}(s)=\int_{\alpha}^{\beta}\left(\int_{\Omega_{2}} \tilde{G}_{\gamma}(f(y), t) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \tilde{G}_{\gamma}\left(A_{k} f(x), t\right) u(x) d \mu_{1}(x)\right) \\
& 27) \times G_{n-1}\left(\frac{t-\alpha}{\beta-\alpha}, \frac{s-\alpha}{\beta-\alpha}\right) d t, \tag{4.27}
\end{align*}
$$

where we assume that all the terms appearing in R_{γ} satisfy the assumptions of Theorem 3.1.

Theorem 4.3. Let $n \in \mathbb{N}, n \geq 2$, R_{γ} be as in (4.27) and $\phi:[\alpha, \beta] \rightarrow \mathbb{R}$ be such that $\phi^{(2 n)}$ is absolutely continuous with $(\cdot-\alpha)(\beta-\cdot)\left(\phi^{(2 n+1)}\right)^{2} \in$ $L([\alpha, \beta])$. If $(\cdot-\alpha)(\beta-\cdot)\left(R_{\gamma}^{\prime}\right)^{2} \in L([\alpha, \beta])$, then the remainder

$$
\begin{align*}
& \varrho(\phi ; \alpha, \beta)=\int_{\Omega_{2}} \phi(f(y)) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \phi\left(A_{k} f(x)\right) u(x) d \mu_{1}(x) \\
& \quad-\int_{\alpha}^{\beta}\left[\int_{\Omega_{2}} \tilde{G}_{\gamma}(f(y), t) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \tilde{G}_{\gamma}\left(A_{k} f(x), t\right) u(x) d \mu_{1}(x)\right] \\
& \quad \times \sum_{k=1}^{n-1}(\beta-\alpha)^{2 k-2}\left[\phi^{(2 k)}(\alpha) \Lambda_{k-1}\left(\frac{\beta-t}{\beta-\alpha}\right)+\phi^{(2 k)}(\beta) \Lambda_{k-1}\left(\frac{t-\alpha}{\beta-\alpha}\right)\right] d t \tag{4.28}
\end{align*}
$$

$$
-(\beta-\alpha)^{2 n-4}\left[\phi^{(2 n-1)}(\beta)-\phi^{(2 n-1)}(\alpha)\right] \int_{\alpha}^{\beta} R_{\gamma}(s) d s
$$

is bounded by

$$
\begin{equation*}
|\varrho(\phi ; \alpha, \beta)| \leq \frac{(\beta-\alpha)^{\left(2 n-\frac{7}{2}\right)}}{\sqrt{2}}\left|T\left(R_{\gamma}, R_{\gamma}\right)\right|^{\frac{1}{2}}\left(\int_{\alpha}^{\beta}(s-\alpha)(\beta-s)\left[\phi^{(2 n+1)}(s)\right]^{2} d s\right)^{\frac{1}{2}} \tag{4.29}
\end{equation*}
$$

Proof. From (3.19) and (4.28) we conclude

$$
\begin{align*}
\varrho(\phi ; \alpha, \beta) & =(\beta-\alpha)^{2 n-3} \int_{\alpha}^{\beta} R_{\gamma}(s) \phi^{(2 n)}(s) d s \\
& -(\beta-\alpha)^{(2 n-4)}\left[\phi^{(2 n-1)}(\beta)-\phi^{(2 n-1)}(\alpha)\right] \int_{\alpha}^{\beta} R_{\gamma}(s) d s \tag{4.30}
\end{align*}
$$

Assumptions of Theorem 4.1 are satisfied for $h=R_{\gamma}$ and $g=\phi^{(2 n)}$, so

$$
\begin{aligned}
& \left|\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} R_{\gamma}(s) \phi^{(2 n)}(s) d s-\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} R_{\gamma}(s) d s \cdot \frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} \phi^{(2 n)}(s) d s\right| \\
& \quad \leq \frac{1}{\sqrt{2}}\left|T\left(R_{\gamma}, R_{\gamma}\right)\right|^{\frac{1}{2}} \frac{1}{\sqrt{\beta-\alpha}}\left(\int_{\alpha}^{\beta}(s-\alpha)(\beta-s)\left[\phi^{(2 n+1)}(s)\right]^{2} d s\right)^{\frac{1}{2}} .
\end{aligned}
$$

Therefore from (4.30) and (4.31) we get (4.29).

Theorem 4.4. Let $n \in \mathbb{N}, n \geq 2$, R_{γ} be as in (4.27) and $\phi:[\alpha, \beta] \rightarrow \mathbb{R}$ be such that $\phi^{(2 n)}$ is monotonic non-decreasing. If R_{γ} is absolutely continuous with $R_{\gamma}^{\prime} \in L^{\infty}([\alpha, \beta])$, then the remainder $\varrho(\phi ; \alpha, \beta)$ given by (4.28) is bounded by

$$
\begin{align*}
& |\varrho(\phi ; \alpha, \beta)| \leq \\
& \quad(\beta-\alpha)^{(2 n-3)}\left\|R_{\gamma}^{\prime}\right\|_{\infty}\left[\frac{(\beta-\alpha)\left(\phi^{(2 n-1)}(\beta)+\phi^{(2 n-1)}(\alpha)\right)}{2}\right. \\
& \left.\quad-\left\{\phi^{(2 n-2)}(\beta)-\phi^{(2 n-2)}(\alpha)\right\}\right] . \tag{4.32}
\end{align*}
$$

Proof. Assumptions of Theorem 4.2 are satisfied for $h=R_{\gamma}$ and $g=$ $\phi^{(2 n)}$, so, taking into account (4.30), we have

$$
\begin{equation*}
\leq \frac{1}{2(\beta-\alpha)}\left\|R_{\gamma}^{\prime}\right\|_{\infty} \int_{\alpha}^{\beta}(s-\alpha)(\beta-s) \phi^{(2 n+1)}(s) d s \tag{4.33}
\end{equation*}
$$

Simple calculation yields

$$
\begin{aligned}
& \int_{\alpha}^{\beta}(s-\alpha)(\beta-s) \phi^{(2 n+1)}(s) d s=\int_{\alpha}^{\beta}[2 s-(\alpha+\beta)] \phi^{(2 n)}(s) d s \\
& =(\beta-\alpha)\left[\phi^{(2 n-1)}(\beta)+\phi^{(2 n-1)}(\alpha)\right]-2\left[\phi^{(2 n-2)}(\beta)-\phi^{(2 n-2)}(\alpha)\right] .
\end{aligned}
$$

Finally, inserting the last expression in (4.33) and taking into account (4.30) we get (4.32).

The last theorem gives Ostrowski-type bound for the generalized Hardy's inequality. About Ostrowski-type inequalities can be found i.e. in [3] and [10].

Theorem 4.5. Let $n \in \mathbb{N}, n \geq 2$, R_{γ} be as in (4.27), $1 \leq p, q \leq \infty$, $\frac{1}{p}+\frac{1}{q}=1$ and $\phi:[\alpha, \beta] \rightarrow \mathbb{R}$ be such that $\left\|\phi^{(2 n)}\right\|_{p}<\infty$. Then
$\mid \int_{\Omega_{2}} \phi(f(y)) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \phi\left(A_{k} f(x)\right) u(x) d \mu_{1}(x)$
$-\int_{\alpha}^{\beta}\left[\int_{\Omega_{2}} \tilde{G}_{\gamma}(f(y), t) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \tilde{G}_{\gamma}\left(A_{k} f(x), t\right) u(x) d \mu_{1}(x)\right]$
$\left.\times \sum_{k=1}^{n-1}(\beta-\alpha)^{2 k-2}\left[\phi^{(2 k)}(\alpha) \Lambda_{k-1}\left(\frac{\beta-t}{\beta-\alpha}\right)+\phi^{(2 k)}(\beta) \Lambda_{k-1}\left(\frac{t-\alpha}{\beta-\alpha}\right)\right] d t \right\rvert\,$
$\leq(\beta-\alpha)^{2 n-3}\left\|\phi^{(2 n)}\right\|_{p}\left\|R_{\gamma}\right\|_{q}$.
The constant $(\beta-\alpha)^{2 n-3}\left\|R_{\gamma}\right\|_{q}$ is sharp when $1<p \leq \infty$ and the best possible when $p=1$.

In the future, we will try to further develop the idea and method using various known functionals.

References

[1] R. P. Agarwal, P. J. Y.Wong, Error Inequalities in Polynomial Interpolation and Their Applications, Kluwer Academic Publishers, Dordrecht / Boston / London, 1993.
[2] R. P. Agarwal, P. J. Y.Wong, Lidstone polynomials and boundary value problems, Computers Math. Applic. 17, No. 10 (1989), 1397-1421
[3] A. Aglić Aljinović, J. Pečarić, and A. Vukelić, On some Ostrowski type inequalities via Montgomery identity and Taylor's formula II, Tamkang Jour. Math. 36(4) (2005), 279-301.
[4] G. Aras-Gazić, V. Ćuljak, J. Pečarić and A. Vukelić, Generalization of Jensen's inequality by Lidstone's polynomial and related results, Math. Inequal. Appl., 16, No. 4 (2013), 1243-1267.
[5] P. Cerone, S.S. Dragomir, Some new Ostrowski-type bounds for the Cebysev functional and applications, J. Math. Inequal. 8(1) (2014), 159-170.
[6] G. H. Hardy, Notes on some points in the integral calculus LX: An inequality between integrals (60), Messenger of Math. 54 (1925), 150-156.
[7] S. Kaijser, L. Nikolova, L.E. Persson and A. Wedestig, Hardy-Type Inequalities via Convexity, Math. Inequal. Appl., 8 (2005), 403-417.
[8] K. Krulić Himmelreich, J. Pečarić, D. Pokaz, Inequalities of Hardy and Jensen, Element, Zagreb, 2013.
[9] K. Krulić Himmelreich, J. Pečarić, D. Pokaz, M. Praljak Generalizations of HardyType Inequalities by Montgomery Identity and New Green Functions, Axioms 2023, 12, 434, 1-13.
[10] K. Krulić Himmelreich, J. Pečarić, D. Pokaz, D. and M. Praljak, Generalizations of Hardy Type Inequalities by Abel-Gontscharoff's Interpolating Polynomial,. Mathematics 2021, 9, 1724. https://doi.org/10.3390/math9151724
[11] K. Krulić Himmelreich, J. Pečarić and M. Praljak, Hardy Type Inequalities Involving Lidstone Interpolation Polynomials, submitted
[12] A. Kufner, L. Maligranda, and L.-E. Persson, The Hardy Inequality. About its History and Some Related Results, Vydavatelsky Servis Publishing House, Pilsen, 2007.
[13] A. Kufner, L. Maligranda, and L.-E. Persson, The prehistory of the Hardy inequality, Amer. Math. Monthly 113 (2006), No.8, 715-732.
[14] J. E. Pečarić, F. Proschan, and Y. L. Tong, Convex functions, Partial Orderings and Statistical Applications, Academic Press, San Diego, 1992.
[15] J. M. Whittaker, On Lidstone series and two-point expansions of analytic functions, Proc. Lond. Math. Soc., 36 (1933-1934), 451-469.
[16] D.V. Widder, Completly convex function and Lidstone series, Trans. Am. Math. Soc., 51 (1942), 387-398.

Poopćenje nejednakosti Hardyjevog tipa putem Lidstonovog interpolacijskog polinoma i novih Greenovih funkcija

Dora Pokaz

SAžEtAK. Za poopćeno okruženje, koje uključuje prostore mjera sa pozitivnim σ-konačnim mjerama, predstavili smo rezultat vezan uz Hardyjevu nejednakost. Uspostavili smo vezu izmedu operatora razlike dobivene pomoću Hardyjeve nejednakosti te izraza koji sadrži Lidstonov interpolacijski polinom i četiri nove Greenove funkcije. Raspravljali smo o $2 n$ konveksnosti funkcije te dali rezultat u ovisnosti o parnosti dijela eksponenta i indeksa n. Primjenom Hölderove nejednakosti za konjugirane eksponente p i q dobili smo daljnje rezultate. Konačno, izveli smo gornje ograde za naš identitet uz pomoć Čebyšeljevog funkcionala te ogradu tipa Ostrowskog za generaliziranu Hardyjevu nejednakost.

First author
Faculty of Civil Engineering
University of Zagreb
10000 Zagreb, Croatia
E-mail: dora.pokaz@grad.unizg.hr

[^0]: 2020 Mathematics Subject Classification. 26D10, 26D15, 39 B62.
 Key words and phrases. convex function; Hardy-type inequality; Lidstone interpolating polynomial; Green function; Čebyšev functional.

