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COMPUTABILITY OF CHAINABLE GRAPHS

Iljazović, Zvonko; Jelić, Matea

Abstract. If every semicomputable set, in arbitrary computable
topological space, which is homeomorphic to a topological space A is

computable, then we say that A has computable type. A topological pair

(A,B), B ⊆ A, has computable type if for all semicomputable sets S and T ,
in arbitrary computable topological space, such that S is homeomorphic to

A by a homeomorphism which maps T to B, it holds that S is computable.

It is known that (G,E) has computable type, where G is a certain kind
of topological graph and E is the set of its endpoints. In this paper,

we consider more general graphs G̃ obtained by taking edges of G̃ to

be chainable continua (instead of arcs) and we prove that (G̃, E) has

computable type, where E is the set of all endpoints of G̃.

1. Introduction

A compact set S ⊆ R is semicomputable if its complement R \ S can
be effectively exhausted by rational open intervals. A compact set S ⊆ R
is computable if it is semicomputable and we can effectively enumerate all
rational open intervals which intersect S. Semicomputable and computable
sets can be defined in more general spaces - computable metric and topological
spaces. Regardless of the ambient space, it is clear that each computable set
is also semicomputable, but the converse does not hold. Namely, there exists
γ > 0 such that [0, γ] is a semicomputable set which is not computable [20].
Moreover, computable numbers are dense in every nonempty computable set
in R, while there exists a nonempty semicomputable set S ⊆ R which does
not contain any computable number [22].
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Although the implication

(1.1) S semicomputable ⇒ S computable

is not true in general, there are certain additional assumptions on S under
which (1.1) holds. For instance, we know this: if S is a semicomputable
circularly chainable continuum which is not chainable then S is computable.
Also, the same is true if S is a continuum chainable from a to b, where a and
b are computable points (i.e. {a, b} is a semicomputable set). So, our main
goal is to give an answer as good as possible to the following question: what
topological conditions force a semicomputable set in a computable topological
space to be a computable one? All the results will be stated in the form of
computable type. We say that A has computable type if (1.1) holds in any
computable topological space X whenever S ⊆ X is homeomorphic to A. It
is known that each sphere in Euclidean space has computable type, moreover
each compact manifold has computable type [20, 13, 14, 18]. However, not
only manifolds have computable type. For example, the Warsaw circle has
computable type and it is not a manifold. As mentioned before, any circularly
chainable continuum which is not chainable has computable type [12, 10, 16].

Likewise, we say that a topological pair (A,B) (i.e. a pair of topological
spaces such that B ⊆ A) has computable type if (1.1) holds whenever there
exists a homeomorphism f : A → S such that f(B) is a semicomputable
set in X. So, [0, 1] does not have computable type (because of the example
from the begining), but ([0, 1], {0, 1}) has. Hence if S is a set in a computable
topological spaceX and f : [0, 1] → S is a homeomorphism such that f(0) and
f(1) are computable points (i.e. if S is an arc with computable endpoints),
then implication (1.1) holds. Even more, as already mentioned, if S is a
continuum chainable from a to b, then (S, {a, b}) has computable type [12,
10, 16].

Certain results regarding computable type and (in)computability of semi-
computable sets can be found in [1, 2, 6, 19, 17, 11, 8, 9, 7, 23].

In this paper, we consider a space which resembles a graph whose edges
are chainable continua. We call such a space a chainable graph. It will (easily)
be shown that each graph defines a chainable graph. But since each chainable
continuum, which is obviously not a graph (since it is not locally connected)
defines a chainable graph, it is clear that we have a generalization of a notion
of a graph. It is proved in [15] that (G,E) has computable type if G is a
graph and E is the set of all its endpoints. Here, we prove a more general
result: if G is a chainable graph and E is the set of all endpoints of G, then
(G,E) has computable type

2. Preliminaries

In this section we give some basic facts about computable metric and
topological spaces. See [21, 26, 24, 25, 4, 3, 12].
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Let k ∈ N, k ≥ 1.

• A function f : Nk → Q is said to be computable if there are
computable (i.e. recursive) functions a, b, c : Nk → N such that

f(x) = (−1)c(x)
a(x)

b(x) + 1
,

for each x ∈ Nk.
• A function f : Nk → R is said to be computable if there exists a
computable function F : Nk+1 → Q such that

|f(x)− F (x, i)| < 2−i,

for each x ∈ Nk, i ∈ N.
• For a set X, let F(X) denote the family of all finite subsets of X. A
function Θ : N → F(N) is called computable if the set

{(x, y) ∈ N2 | y ∈ Θ(x)}

is computable and if there is a computable function φ : N → N such
that

Θ(x) ⊆ {0, . . . , φ(x)}
for each x ∈ N.

From now on, let N → F(N), j → [j] be some fixed computable function
whose range is the set of all nonempty finite subsets of N.

2.1. Computable metric space. A triple (X, d, α) is said to be a computable
metric space if (X, d) is a metric space, α = (αi) is a sequence in X such
that α(N) ⊆ X is dense in (X, d) and such that the function N2 → R,
(i, j) 7→ d(αi, αj) is computable.

For example, if d is the Euclidean metric on Rn, where n ∈ N \ {0},
and α : N → Qn is some effective enumeration of Qn, then (Rn, d, α) is a
computable metric space.

Let (X, d, α) be a fixed computable metric space.
Let i ∈ N and r ∈ Q, r > 0. We say that the set B(αi, r) = {x ∈

X | d(x, αi) < r} is an (open) rational ball in a computable metric space
(X, d, α). By B(αi, r) we will denote the corresponding closed rational ball.

Now, let q : N → Q be some fixed computable function whose image is
the set of all positive rational numbers and let τ1, τ2 : N → N be some fixed
computable functions such that {(τ1(i), τ2(i)) | i ∈ N} = N2. For i ∈ N we
define

(2.2) Ii = B(ατ1(i), qτ2(i)).

Note that the sequence (Ii)i∈N is an enumeration of all rational balls. Every
finite union of rational balls will be called a rational open set. For j ∈ N
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we define

Jj =
⋃
i∈[j]

Ii.

Clearly, {Jj | j ∈ N} is the family of all rational open sets in (X, d, α).
Let S ⊆ X be a closed set in (X, d). We say that S is a computably

enumerable (c.e.) set in (X, d, α) if the set

{i ∈ N | Ii ∩ S ̸= ∅}

is a c.e. subset of N.
Let S ⊆ X be a compact set in (X, d). We say that S is a semicomputable

set in (X, d, α) if the set

{j ∈ N | S ⊆ Jj}
is a c.e. subset of N.

Finally, we say that S is a computable set in (X, d, α) if S is both c.e.
and semicomputable in (X, d, α).

These definitions do not depend on the choice of functions q, τ1, τ2 and
([j])j∈N.

It can be shown that a nonempty subset S of X is computable in (X, d, α)
if and only if S can be effectively approximated by a finite subset of {αi | i ∈
N} with any given precision. More precisely, S is computable in (X, d, α) if
and only if there exists a computable function f : N → N such that

dH(S, {αi | i ∈ [f(k)]}) < 2−k,

for each k ∈ N, where dH is the Hausdorff metric (see Proposition 2.6 in [14]).

2.2. Computable topological space. Amore general ambient space is a computable
topological space. The notion of a computable topological space is not new,
for example see [27, 28]. We will use the notion of a computable topological
space which corresponds to the notion of a SCT2 space from [27] (which is an
effective second countable Hausdorff space).

Let (X, T ) be a topological space and let (Ii) be a sequence in T such
that the set {Ii | i ∈ N} is a basis for T . A triple (X, T , (Ii)) is called a
computable topological space if there exist c.e. subsets C,D ⊆ N2 such
that:

1. if i, j ∈ N are such that (i, j) ∈ C, then Ii ⊆ Ij ;
2. if i, j ∈ N are such that (i, j) ∈ D, then Ii ∩ Ij = ∅;
3. if x ∈ X and i, j ∈ N are such that x ∈ Ii ∩ Ij , then there is k ∈ N

such that x ∈ Ik and (k, i), (k, j) ∈ C,
4. if x, y ∈ X are such that x ̸= y, then there are i, j ∈ N such that

x ∈ Ii, y ∈ Ij and (i, j) ∈ D.

Let (X, T , (Ii)) be a fixed computable topological space. We define
Jj :=

⋃
i∈[j] Ii.



COMPUTABILITY OF CHAINABLE GRAPHS 5

We say that a closed set S in (X, T ) is computably enumerable in
(X, T , (Ii)) if {i ∈ N | S ∩ Ii ̸= ∅} is a c.e. subset od N.

Furthermore, we say that S is semicomputable in (X, T , (Ii)) if S is a
compact set in (X, T ) and {j ∈ N | S ⊆ Jj} is a c.e. subset of N.

We say that S is computable in (X, T , (Ii)) if S is both c.e. and semicomputable
in (X, T , (Ii)).

The definition of a semicomputable set (and a computable set) does not
depend on the choice of the sequence ([j])j∈N.

If (X, d, α) is a computable metric space, then (X, Td, (Ii)) is a computable
topological space where Td is a topology induced by the metric d and (Ii) is the
sequence defined by (2.2). Clearly, S is c.e./semicomputable/computable in
(X, d, α) if and only if S is c.e./semicomputable/computable in (X, Td, (Ii)).

We say that x ∈ X is a computable point in (X, T , (Ii)) if {i ∈ N | x ∈
Ii} is c.e. subset of N.

The proofs of the following facts, which will be used frequently in this
paper, can be found in [18].

Theorem 2.1. Let (X, T , (Ii)) be a computable topological space. There
exist c.e. subsets C,D ⊆ N2 such that:

1. if i, j ∈ N are such that (i, j) ∈ C, then Ji ⊆ Jj;
2. if i, j ∈ N are such that (i, j) ∈ D, then Ji ∩ Jj = ∅;
3. if F is a finite family of nonempty compact sets in (X, T ) and A ⊆ N

is a finite subset of N, then for each K ∈ F there is iK ∈ N such that
(i) K ⊆ Jik ;
(ii) if K,L ∈ F are such that K ∩ L = ∅, then (iK , iL) ∈ D;
(iii) if a ∈ A and K ∈ F are such that K ⊆ Ja, then (ik, a) ∈ C.

Proposition 2.2. Let (X, T , (Ii)) be a computable topological space, let
S ⊆ X be a semicomputable set in this space and let m ∈ N. Then the set
S \ Jm is semicomputable in (X, T , (Ii)).

The proof of the following proposition can be found in [15].

Proposition 2.3. Let (X, T , (Ii)) be a computable topological space and
let x0, . . . , xn ∈ X. Then the following holds:

x0, . . . , xn are computable points ⇐⇒ {x0, . . . , xn} is a semicomputable set

⇐⇒ {x0, . . . , xn} is a computable set.

If (X, T , (Ii)) is a computable topological space, then the topological
space (X, T ) need not be metrizable (see Example 3.2 in [18]). However,
if S is a compact set in (X, T ), then S, as a subspace of (X, T ), is a compact
Hausdorff second countable space, which implies that S is a normal second
countable space and therefore it is metrizable. This fact will be very important
to us later and we will use it often.
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Let A be a topological space. Suppose that the following holds: if (X, T ,
(Ii)) is a computable topological space and S a semicomputable set in this
space such that S and A are homeomorphic, then S is computable. Then we
say that A has computable type.

Moreover, let A be a topological space and let B be a subspace of A.
Suppose that the following holds: if (X, T , (Ii)) is a computable topological
space, S and T semicomputable sets in this space and f : A → S a homeomorphism
such that f(B) = T , then S is computable. Then we say that (A,B) has
computable type.

2.3. Chainable and circularly chainable Hausdorff continua. Let X be a set
and C = (C0, . . . , Cm) be a finite sequence of subsets of X. We say that C is
a chain in X if the following holds:

Ci ∩ Cj = ∅ ⇐⇒ 1 < |i− j|,
for all i, j ∈ {0, . . . ,m}.

We say that C is a circular chain in X if the following holds:

Ci ∩ Cj = ∅ ⇐⇒ 1 < |i− j| < m,

for all i, j ∈ {0, . . . ,m}.
Let A ⊆ X and a, b ∈ A. We say that C0, . . . , Cm covers A if A ⊆

C0 ∪ · · · ∪ Cm, and we say it covers A from a to b if it is also a ∈ C0 and
b ∈ Cm.

Let (X, d) be a metric space. A (circular) chain C0, . . . , Cm is said to be
a ϵ-(circular) chain, for some ϵ > 0, if diamCi < ϵ, for each i ∈ {0, . . . ,m}
and it is said to be an open (circular) chain if every Ci is open in (X, d).
In the same way we define the notion of a compact (circular) chain.

Let (X, d) be a continuum, i.e. a connected and compact metric space.
We say that (X, d) is a (circularly) chainable continuum if for every ϵ > 0
there is an open ϵ-(circular) chain in (X, d) which covers X.

Suppose a, b ∈ X. We say that (X, d) is a continuum chainable from
a to b if for every ϵ > 0 there is an open ϵ-chain C0, . . . , Cm which covers X
from a to b.

We similarly define the notions of an open and a compact (circular) chain
in a topological space.

AHausdorff continuum is a connected and compact Hausdorff topological
space.

Let A and B be families of sets. We say that A refines B if for each
A ∈ A there is B ∈ B such that A ⊆ B.

Let X be a Hausdorff continuum. We say that X is a (circularly)
chainable Hausdorff continuum if for each open cover U of X there is
an open (circular) chain C0, . . . , Cm in X which covers X and such that
{C0, . . . , Cm} refines U . We similarly define that a Hausdorff continuum is
chainable from a to b.
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It follows easily that a metric space (X, d) is a (circularly) chainable
continuum if and only if topological space (X, Td) is a (circularly) chainable
Hausdorff continuum. Also, (X, d) is a continuum chainable from a to b if and
only if (X, Td) is a Hausdorff continuum chainable from a to b. See Section 3
in [10].

Remark 2.4. Let X and Y be topological spaces and let f : X → Y be
a homeomorphism. Then is easy to see that If X is a (circularly) chainable
Hausdorff continuum if and only if Y is a (circularly) chainable Hausdorff
continuum. Furthermore, if a, b ∈ X, then X is a Hausdorff continuum
chainable from a to b if and only if Y is a Hausdorff continuum chainable
from f(a) to f(b).

The proofs of the following facts can be found in [16].

Proposition 2.5. Let (X, d) be a continuum and a, b ∈ X. Then (X, d)
is a chainable continuum from a to b if and only if for each ϵ > 0 there is a
compact ϵ-chain in (X, d) which covers X from a to b.

Proposition 2.6. Let (X, d) be a continuum. Then (X, d) is a (circularly)
chainable continuum if and only if for each ϵ > 0 there is a compact ϵ-
(circular) chain in (X, d) which covers X.

Example 2.7. We have that [0, 1] (with the Euclidean metric) is a continuum
chainable from 0 to 1. This can be easily concluded from Proposition 2.5.
(Thus [0, 1] with the Euclidean topology is a Hausdorff continuum chainable
from 0 to 1.)

Similarly, the unit circle S1 in R2 is a circularly chainable continuum.
However, S1 is not a chainable continuum (see [5]).

A topological space homeomorphic to [0, 1] is called an arc. If A is an
arc and f : [0, 1] → A a homeomorphism, then we say that f(0) and f(1) are
endpoints of A (this definition does not depend on the choice of f).

If A is an arc with endpoints a and b, then by Example 2.7 and Remark
2.4 we have that A is a Hausdorff continuum chainable from a to b.

A topological space homeomorphic to S1 is called a topological circle.
By Example 2.7 and Remark 2.4 it is a circularly chainable Hausdorff continuum
which is not chainable.

Example 2.8. Let

K = ({0} × [−1, 1]) ∪
{(

x, sin
1

x

)
| 0 < x ≤ 1

}
.

Let a = (0,−1) and b = (1, sin 1). It is known thatK is a continuum chainable
from a to b. However, K is not an arc since K is not locally connected.

Furthermore, let

W = K ∪ ({0} × [−2,−1]) ∪ ([0, 1]× {−2}) ∪ ({1} × [−2, sin 1]).
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The space W is called the Warsaw circle. It is known that W is a circularly
chainable continuum which is not chainable. Since W is not locally connected,
W is not a topological circle.

Theorem 2.9. Let (X, T , (Ii)) be a computable topological space and let S
be a semicomputable set in this space. Suppose S is, as a subspace of (X, T ),
a Hausdorff continuum chainable from a to b, where a and b are computable
points in (X, T , (Ii)). Then S is computable.

3. Chainable graphs

Let n ∈ N and let I be a nonempty finite family of (non-degenerate) line
segments in Rn such that the following holds:

(3.3) if I, J ∈ I are such that I ̸= J and I ∩ J ̸= ∅, then I ∩ J = {a},
where a is an endpoint of both I and J . Then any topological space G
homeomorphic to

⋃
I∈I I is called a graph.

If G is a graph and x ∈ G, we say that x is an endpoint of G if there
exists an open neighborhood N of x in G such that N is homeomorphic to
[0,∞) by a homeomorphism which maps x to 0. If I is the family from the
definition of G, then x is an endpoint of G if and only if there exists a unique
I ∈ I such that x is an endpoint of I (see [15]).

The following result was proved in [15].

Theorem 3.1. Let G be a graph and let E be the set of all endpoints of
G. Then (G,E) has computable type.

In this section we consider spaces more general than graphs, so called
chainable graphs, and we generalize Theorem 3.1 by showing that an analogue
of this theorem for chainable graphs also holds.

Let A be a topological space. Suppose V is a finite subset of A and let
K be a finite family of pairs (K, {a, b}), where a, b ∈ V , a ̸= b, and K is a
subspace of A such that K is a Hausdorff continuum chainable from a to b
and K ∩ V = {a, b}. Suppose

A = V ∪
⋃

(K,{a,b})∈K

K

and the following holds:

(i) for all a, b ∈ V , a ̸= b, there exists at most oneK such that (K, {a, b}) ∈
K;

(ii) if (K, {a, b}) ∈ K and (K, {c, d}) ∈ K, then {a, b} = {c, d};
(iii) if (K, {a, b}), (L, {c, d}) ∈ K and K ̸= L, then K ∩ L ⊆ V .

Then we say that the triple (A,K, V ) is a chainable graph.
Let (A,K, V ) be a chainable graph and let a ∈ V . We say that a is

an endpoint of (A,K, V ) if there exists a unique (K, {c, d}) ∈ K such that
a ∈ {c, d}.



COMPUTABILITY OF CHAINABLE GRAPHS 9

Example 3.2. Let G be a graph and let I be the family from the
definition of G. Let V be the set of all endpoints of all I ∈ I. Let K be
the family of all (I, {a, b}) such that I ∈ I and a and b are endpoints of I.
Then (G,K, V ) is obviously a chainable graph. We have that x is an endpoint
of G if and only if x is an endpoint of (G,K, V ).

Example 3.3. Suppose K is a Hausdorff continuum chainable from a to
b.

If a ̸= b, then (K, {(K, {a, b})}, {a, b}) is a chainable graph and a and b
are all its endpoints.

If a = b, then it is easy to conclude that K = {a} and we have that
(K, ∅, {a}) is a chainable graph which has no endpoints.

If (G,K, V ) is a chainable graph, then G need not be a graph, as the
following example shows.

Example 3.4. LetK, a and b be as in Example 2.8. Then (K, {(K, {a, b})}, {a, b})
is a chainable graph. But K is not a graph: K is not locally connected and
each graph is easily seen to be locally connected.

Remark 3.5. Let (G,K, V ) be a chainable graph. Suppose (K, {a, b}),
(L, {c, d}) ∈ K are such that K ̸= L. Then K ∩ L ⊆ V and since K ∩ V =
{a, b}, we have K∩L ⊆ {a, b}. If K∩L = {a, b}, then {a, b} ⊆ L∩V = {c, d},
hence {a, b} = {c, d} and so (L, {a, b}) ∈ K which is impossible by property (i)
from the definition of a chainable graph. We conclude that card(K ∩ L) ≤ 1.

Also note that K and L can only intersect in one of the points a, b, c, d.
So

(K \ {a, b}) ∩ L = ∅ = K ∩ (L \ {c, d}).

In this section we are going to prove the following result:

Theorem 3.6. If (A,K, V ) is a chainable graph and B is the set of all
its endpoints, then (A,B) has computable type.

By Examples 3.2 and 3.4, Theorem 3.6 is a generalization of Theorem
3.1. Furthermore, by Example 3.3, if a ̸= b, Theorem 3.6 is a generalization
of Theorem 2 from [10]: if K is a Hausdorff continuum chainable from a to b,
then (K, {a, b}) has computable type.

Although Theorem 3.6 is a generalization of Theorem 3.1, the techniques
of the proof of Theorem 3.1 in [15] cannot be easily applied in the case of
chainable graphs. The main reason if that that proof essentially relies on the
fact that for each x ∈ [0, 1] such that 0 < x < 1 and each open neighborhood
U of x in [0, 1] there exist subcontinua F , G and H of [0, 1] which cover [0, 1]
and such that 0 ∈ F , 1 ∈ H, F ∩H = ∅ and x ∈ G ⊆ U (it is obvious that
we can find such F , G and H). The problem is that an analogous statement
does not hold in general for chainable continua. For example, let K, a and
b be as in Example 2.8, let x = (0, 0) and U = {(x, y) ∈ K | 0 ≤ x < 1

2 ,



10 ILJAZOVIĆ, Z. AND JELIĆ, M.

− 1
2 < y < 1

2}. Then U is an open neighborhood of x in K and it is not hard
to see that there exist no subcontinua F , G and H of K which cover K and
such that a ∈ F , b ∈ H, F ∩H = ∅ and x ∈ G ⊆ U .

Before we give a proof of Theorem 3.6 we need some further facts about
chainable continua.

Let X be a set. Let A = (A0, . . . , Am) and B = (B0, . . . , Bn) be finite
sequences of subsets of X. We say that A strongly refines B if {A0, . . . , Am}
refines {B0, . . . , Bn}, A0 ⊆ B0 and Am ⊆ Bn.

The proof of the following lemma can be found in [12].

Lemma 3.7. Let (X, d) be a metric space such in each closed ball is
compact. Let (Ck), where Ck = (Ck

0 , . . . , C
k
mk

), k ∈ N, be a sequence of

chains such that Ck+1
0 , . . . , Ck+1

mk+1 strongly refines Ck
0 , . . . , C

k
mk

and such that

diam(Ck
j ) < 2−k, for each k ∈ N and for each j ∈ {0, . . . ,mk}. Let

S =
⋂
k∈N

(Ck+1
0 ∪ · · · ∪ Ck+1

mk+1).

Then S is a continuum chainable from a to b, where a ∈
⋂

k∈N Ck
0 , b ∈⋂

k∈N Ck
mk

.

Lemma 3.8. Let (K, d) be a continuum chainable from a to b, a, b ∈ K.
Let ϵ > 0 be arbitrary. Then there exist c ∈ K and K ′ ⊆ K such that c ̸= a,
K ′ is a continuum chainable from a to c and K ′ ⊆ B(a, ϵ).

Proof. Firstly, we will construct a sequence of chains (Ci), Ci = (Ci
0, . . . , C

i
mi

),
i ∈ N, such that for each i ∈ N:

1. Ci covers K from a to b and diam(Ci
j) < 2−i, for each j ∈ {0, . . . ,mi};

2. Ci+1
0 , . . . , Ci+1

mi+1 strongly refines Ci
0, . . . , C

i
mi

;

3. diam(C0
j ) < min{ ϵ

3 ,
d(a,b)

4 }, for each j ∈ {0, . . . ,m0}.

BecauseK is a continuum chainable from a to b, there is an open min{ ϵ
3 ,

d(a,b)
4 , 1}-

chain C0 = (C0
0 , . . . , C

0
m0

) in (K, d) which covers K from a to b. Since

diam(C0
j ) <

d(a,b)
4 , for each j ∈ {0, . . . ,m0}, we easily conclude that m0 ≥ 4.

Let us assume that Ci = (Ci
0, . . . , C

i
mi

) is an open chain in (K, d) with

property 1. Since U = {Ci
0, . . . , C

i
mi

} is an open cover of (K, d), there is a

Lebesgue number λ of U . Because a ∈ Ci
0 and Ci

0 is an open set, there is ra > 0
such that B(a, ra) ⊆ Ci

0. Also, there is rb > 0 such that B(b, rb) ⊆ Ci
mi

.

Since K is a chainable continuum, there is a min{ra, rb, λ, 2−(i+1)}-open
chain Ci+1 = (Ci+1

0 , . . . , Ci+1
mi+1

) in (K, d) which covers K from a to b. Because

diam(Ci+1
j ) = diam(Ci+1

j ) < λ for each j ∈ {0, . . . ,mi+1}, we have that

Ci+1
0 , . . . , Ci+1

mi+1 refines C
i
0, . . . , C

i
mi

. Furthermore, a ∈ Ci+1
0 and diam(Ci+1

0 ) =

diam(Ci+1
0 ) < ra, so Ci+1

0 ⊆ B(a, ra) and thus Ci+1
0 ⊆ Ci

0. Analogously,
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Ci+1
mi+1 ⊆ Ci

mi
. This concludes the recursive construction of the sequence (Ci)

with properties 1-3.
Now, we want to choose, for each i ∈ N,

(3.4) ni ∈ {2, . . . ,mi − 2}

so that

(3.5) Ci+1
0 , . . . , Ci+1

ni+1 strongly refines Ci
0, . . . , C

i
ni
.

Let n0 = 2. Since m0 ≥ 4, we have n0 ∈ {2, . . . ,m0 − 2}. Let us assume
that i ∈ N and ni ∈ {2, . . . ,mi − 2}.

Let

(3.6) k = min{j ∈ {0, . . . ,mi+1} | Ci+1
j ⊆ Ci

ni
}.

The number k is well defined. Namely, if we assume that there is no j ∈
{0, . . . ,mi+1} such that Ci+1

j ⊆ Ci
ni

and we take into account that Ci+1
0 , . . . ,

Ci+1
mi+1 strongly refines Ci

0, . . . , C
i
mi

, we get that K = U ∪ V , where

U =
⋃

{Ci+1
j | Ci+1

j ⊆ Ci
l for some l < ni},

V =
⋃

{Ci+1
j | Ci+1

j ⊆ Ci
l for some l > ni}.

The sets U and V are nonempty. Namely, Ci+1
0 ⊆ Ci

0 and 0 < ni since ni ≥ 2,

so Ci+1
0 ⊆ U , in particular U ̸= ∅. Also, Ci+1

mi+1 ⊆ Ci
mi

and mi > ni since

ni ≤ mi − 2, so Ci+1
mi+1

⊆ V and V ̸= ∅.
If l, l′ ∈ {0, . . . ,mi} are such that l < ni < l′, then Ci

l ∩ Ci
l′ = ∅ since Ci

is a chain. This implies U ∩ V = ∅.
Clearly U and V are open in (K, d). We conclude that (U, V ) is a

separation of (K, d), which is impossible since (K, d) is connected. So the
number k is well defined.

Since ni ≥ 2, Ci
ni

∩ Ci
0 = ∅ holds. Because Ci+1

k ⊆ Ci
ni

and Ci+1
0 ⊆ Ci

0,

Ci+1
k ∩ Ci+1

0 = ∅ holds, also. Therefore, k ≥ 2. Similary, ni ≤ mi − 2, so

Ci
ni
∩Ci

mi
= ∅. Because Ci+1

mi+1 ⊆ Ci
mi

holds, it is Ci+1
mi+1

∩Ci+1
k = ∅ and hence

k ≤ mi+1 − 2. So, k ∈ {2, . . . ,mi+1 − 2}.
Now, let ni+1 = k.

We claim that Ci+1
0 , . . . , Ci+1

ni+1 strongly refines Ci
0, . . . , C

i
ni
. Certainly

Ci+1
0 ⊆ Ci

0 and Ci+1
ni+1 ⊆ Ci

ni
. We want to show that for each j ∈ {1, . . . , k−1}

there exists j′ ∈ {0, . . . , ni} such that Ci+1
j ⊆ Ci

j′ . Suppose the opposite.
Then the number

k′ = min{j ∈ {1, . . . , k − 1} | ∃j′ ∈ {ni + 1, . . . ,mi} such that Ci+1
j ⊆ Ci

j′}

is well defined.
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By the definition of k′ we have Ci+1
k′−1 ⊆ Ci

j′′ for some j′′ ≤ ni. However,

if j′′ = ni, then Ci+1
k′−1 ⊆ Ci

ni
, which, together with k′ − 1 < k′ ≤ k − 1 < k,

contradicts (3.6) (the choice of k). Hence j′′ < ni.
The inequalities j′′ < ni < j′ imply Ci

j′ ∩ Ci
j′′ = ∅ and consequently

Ci+1
k′ ∩ Ci+1

k′−1 = ∅ which is impossible.

We conclude that Ci+1
0 , . . . , Ci+1

ni+1 strongly refines Ci
0, . . . , C

i
ni
.

So there exists a sequence (ni) such that (3.4) and (3.5) hold for each
i ∈ N. We know that diam(Ci

j) < 2−i for each i ∈ N and each j ∈ {0, . . . , ni}.
Since each closed ball in a compact is also a compact, using Lemma 3.7 we
conclude that

K ′ =
⋂
i∈N

(Ci+1
0 ∪ · · · ∪ Ci+1

ni+1).

is a continuum chainable from a′ to c, where a′ ∈
⋂

i∈N Ci
0 and c ∈

⋂
i∈N Ci

ni
.

However, by construction we have a ∈
⋂

i∈N Ci
0 and diam(Ci

0) → 0, therefore
a = a′.

On the other hand, c ∈ C0
n0

= C0
2 and so a ̸= c. Furthermore,

K ′ ⊆ C1
0 ∪ C1

1 ∪ · · · ∪ C1
n1

⊆ C0
0 ∪ C0

1 ∪ C0
2

and consequently

diamK ′ ≤ diam(C0
0 ∪ C0

1 ∪ C0
2 ) < ϵ.

Now a ∈ K ′ implies K ′ ⊆ B(a, ϵ).

Remark 3.9. Using Remark 2.4, we conclude the following: if (A,K, V )
is a chainable graph, B the set of all its endpoints, A′ a topological space and
f : A → A′ a homeomorphism, then

(A′, {(f(K), {f(a), f(b)}) | (K, {a, b}) ∈ K}, f(V ))

is a chainable graph and f(B) is the set of all its endpoints.

Let (X, T , (Ii)) be a computable topological space and let S and T be
subsets of X such that S ⊆ T . We say that S is computably enumerable
(c.e) up to T if there exists a c.e. subset Ω of N such that for each i ∈ N
the following holds:

if Ii ∩ S ̸= ∅, then i ∈ Ω;

if i ∈ Ω, then Ii ∩ T ̸= ∅.
It is obvious that if S is closed and S is c.e. up to S, then S is a c.e. set in
(X, T , (Ii)).

Remark 3.10. Let (X, T , (Ii)) be a computable topological space and
let S0, . . . , Sk and T be subsets of X such that Si is c.e. up to T for each
i ∈ {0, . . . , k}. Then it readily follows that S0 ∪ · · · ∪ Sk is c.e. up to T .
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Now we are ready to prove Theorem 3.6. In view of Remark 3.9 it is
enough to prove the following theorem.

Theorem 3.11. Let (X, T , (Ii)) be a computable topological space and let
S and T be semicomputable sets in this space. Suppose there exist K and V
such that (S,K, V ) is a chainable graph and T is the set of all its endpoints.
Then S is computable.

Proof. The claim of the theorem is clear if S = ∅. Suppose S ̸= ∅.
Since S is compact in (X, T ), it is metrizable. Let d be the metric on S which
induces the topology on S, i.e. the relative topology on S in (X, T ). So, for
each (K, {a, b}) ∈ K the metric space (K, d|K×K) is a continuum chainable
from a to b.

Let

K′ = {K | ∃a, b such that (K, {a, b}) ∈ K}.
Then, by the definition of a chainable graph,

(3.7) S =

( ⋃
K∈K′

K

)
∪

(
V \

( ⋃
K∈K′

K

))
.

The set V \
(⋃

K∈K′ K
)
is finite (since V is finite) and therefore compact in

(X, T ). It is clearly disjoint with the compact set
⋃

K∈K′ K and so there exists

m ∈ N such that
⋃

K∈K′ K ⊆ Jm and Jm is disjoint with V \
(⋃

K∈K′ K
)
. It

follows from (3.7) that

V \

( ⋃
K∈K′

K

)
= S \ Jm

and thus V \
(⋃

K∈K′ K
)
is a semicomputable set (Proposition 2.2). Now

Proposition 2.3 gives that V \
(⋃

K∈K′ K
)
is a computable set in (X, T , (Ii)),

in particular it is c.e. So it is (trivially) c.e. up to S.
We want to prove that K is c.e. up to S for each K ∈ K′. If we prove

that, then (3.7) and Remark 3.10 will imply that S is c.e. up to S, hence S
will be c.e. and thus computable.

Let K ∈ K′. Then we have (K, {a, b}) ∈ K for some a and b. There are
four cases: a, b /∈ T ; a ∈ T and b /∈ T ; a /∈ T and b ∈ T ; a, b ∈ T .

Suppose a, b /∈ T . Let

M = {M ⊆ X | ∃m ∈ X such that (M, {m, a}) ∈ K}.

Then M\ {K} ̸= ∅ (since a is not an endpoint of S). Let M0, . . . ,Mk be all
(mutually different) elements of M\ {K}.

For each i ∈ {0, . . . , k} let mi be such that

(Mi, {mi, a}) ∈ K.
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Then mi ̸= mi′ for all i, i
′ ∈ {0, . . . , k} such that i ̸= i′ (by property (i) from

the definition of a chainable graph since Mi ̸= Mi′) and also mi ̸= b for each
i ∈ {0, . . . , k}. By Remark 3.5 we have

(3.8) K ∩Mi = {a} for each i ∈ {0, . . . , k}.

Similarly, let

L = {L ⊆ X | ∃l ∈ X such that (L, {l, b}) ∈ K},

let L0, . . . , Ln be all (mutually different) elements of L\{K} and let l0, . . . , ln ∈
V \ {a} be mutually different such that

(Lj , {lj , b}) ∈ K

for each j ∈ {0, . . . , n}. It follows from Remark 3.5 that

(3.9) K ∩ Lj = {b} for each j ∈ {0, . . . , n}.

Note also that by the same remark for all i ∈ {0, . . . , k} and j ∈ {0, . . . , n}
we have

(3.10) Mi ∩ Lj ⊆ {mi} ∩ {lj}.

Let i ∈ {0, . . . , k}. Then there exists a compact d(a,mi)
4 -chain D0, . . . , Dv

in (Mi, d|Mi×Mi
) which covers Mi from a to mi. Since a ∈ D0 and mi ∈ Dv

and D0, . . . , Dv is a chain, the triangle inequality implies

d(a,mi) ≤ diam(D0) + · · ·+ diam(Dv) ≤ (v + 1) · d(a,mi)

4
,

which yields v ≥ 3. Let

M1
i = D0, M2

i = D1 ∪ · · · ∪Dv−2 and M3
i = Dv−1 ∪Dv.

Then M1
i , M

2
i and M3

i are nonempty compact sets in (X, T ) such that

(3.11) Mi = M1
i ∪M2

i ∪M3
i , M1

i ∩M3
i = ∅, a ∈ M1

i and mi ∈ M3
i

and

(3.12) mi /∈ M1
i ∪M2

i .

Similarly, for each j ∈ {0, . . . , n} there exist nonempty compact sets L1
j , L

2
j

and L3
j in (X, T ) such that

(3.13) Lj = L1
j ∪ L2

j ∪ L3
j , L1

j ∩ L3
j = ∅, b ∈ L1

j and lj ∈ L3
j

and lj /∈ L1
j ∪ L2

j .
Let

F = {F | ∃c, d such that (F, {c, d}) ∈ K and {a, b} ∩ {c, d} = ∅}.
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Note that the families F and M∪L∪{K} are disjoint and their union is K′.
Furthermore, by Remark 3.5 for all F ∈ F , i ∈ {0, . . . , k} and j ∈ {0, . . . , n}
the following holds

(3.14) F ∩Mi ⊆ {mi}, F ∩ Lj ⊆ {lj} and F ∩K = ∅.

Let

W = V \ {a, b,m0, . . . ,mk, l0, . . . , ln}.
The sets

(3.15) K ∪
k⋃

i=0

M1
i ∪

n⋃
j=0

L1
j and

⋃
F ∪W ∪

k⋃
i=0

M3
i ∪

n⋃
j=0

L3
j

are nonempty and compact in (X, T ) and they are also disjoint since it is
obvious that the sets from the different unions are disjoint (in detail can be
proven using (3.14), (3.11), (3.13), (3.10), (3.9) and (3.8)).

So there exist µ, µ′ ∈ N such that Jµ ∩ Jµ′ = ∅,

(3.16)
⋃

F ∪W ∪
k⋃

i=0

M3
i ∪

n⋃
j=0

L3
j ⊆ Jµ and K ∪

k⋃
i=0

M1
i ∪

n⋃
j=0

L1
j ⊆ Jµ′ .

(this follows e.g. from Theorem 2.1). Therefore

(3.17)

K ∪
k⋃

i=0

M1
i ∪

n⋃
j=0

L1
j

 ∩ Jµ = ∅.

Note that the union of
⋃k

i=0 M
2
i ∪

⋃n
j=0 L

2
j and the sets in (3.15) is equal to

S. From this and (3.16) it follows that

(3.18) S \ Jµ ⊆ K ∪
k⋃

i=0

M1
i ∪

k⋃
i=0

M2
i ∪

n⋃
j=0

L1
j ∪

n⋃
j=0

L2
j .

Let us denote

A =

k⋃
i=0

M1
i ∪

k⋃
i=0

M2
i and B =

n⋃
j=0

L1
j ∪

n⋃
j=0

L2
j .

By (3.17) and (3.18) we have

(3.19) K ∪
k⋃

i=0

M1
i ∪

n⋃
j=0

L1
j ⊆ S \ Jµ ⊆ K ∪A ∪B,

and S \ Jµ is a semicomputable set in (X, T , (Ii)) (Proposition 2.2).
It follows from (3.10), (3.12), (3.8) and (3.9) that

(3.20) A ∩B = ∅, A ∩K = {a} and B ∩K = {b}.
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By (3.16) we have a, b ∈ Jµ′ ∩ S. Since Jµ′ ∩ S is open in (S, d), there is
ϵ > 0 such that B(a, ϵ) ⊆ Jµ′ ∩ S ⊆ S \ Jµ, B(b, ϵ) ⊆ Jµ′ ∩ S ⊆ S \ Jµ and
B(a, ϵ) ∩B(b, ϵ) = ∅.

Now, according to Lemma 3.8, there are c ∈ M0, c ̸= a, M̃ ⊆ M0, d ∈ L0,

d ̸= b, and L̃ ⊆ L0 such that:

(3.21) M̃ is a continuum chainable from c to a and M̃ ⊆ B(a, ϵ) ⊆ S \ Jµ;

(3.22) L̃ is a continuum chainable from b to d and L̃ ⊆ B(b, ϵ) ⊆ S \ Jµ.

Therefore, M̃ ∪K ∪ L̃ is a connected set such that

(3.23) M̃ ∪K ∪ L̃ ⊆ S \ Jµ.
Furthermore, d ∈ B(b, ϵ) and B(b, ϵ) ∩ Jµ = ∅, so d /∈ Jµ. Since l0 ∈ L3

0 ⊆ Jµ,
we have d ̸= l0.

Because d ̸= b and d ∈ L0, it follows from (3.9) that d /∈ K. On the
other hand, d ̸= l0, d ∈ L0 and (3.10) imply d /∈ Mi for each i ∈ {0, . . . k}.
Consequently, d /∈ A. Hence

d /∈ K ∪A.

Therefore we can choose α ∈ N such that

(3.24) K ∪A ⊆ Jα and d /∈ Jα.

Similary, we can choose β ∈ N such that

(3.25) K ∪B ⊆ Jβ and c /∈ Jβ .

Let C and D be the subsets of N2 from Theorem 2.1 and let f : N → N
be a computable function such that Ii = Jf(i) for each i ∈ N.

Suppose i ∈ N is such that Ii ∩K ̸= ∅. Then there exists x ∈ Ii ∩ (K \
{a, b}) and we can choose 0 < r < min{d(x, a), d(x, b)} so that

(3.26) B(x, r) ⊆ Ii ∩K ⊆ Ii = Jf(i).

Furthermore, since K is a continuum chainable from a to b, there is a
compact r-chain K0, . . . ,Kt in (K, d|K×K) which covers K and such that
a ∈ K0 and b ∈ Kt. Let p ∈ {0, . . . , t} be such that x ∈ Kp. Since r < d(x, a)
and r < d(x, b), p ̸= 0 and p ̸= t hold. Because of (3.26) and diam(Kp) < r,
we have that

(3.27) Kp ⊆ Ii = Jf(i).

Let us denote

F = A ∪K0 ∪ · · · ∪Kp−1 and G = B ∪Kp+1 ∪ · · · ∪Kt.

It is K ∪A ∪B = F ∪Kp ∪G, and because of (3.19) holds

(3.28) S \ Jµ ⊆ F ∪Kp ∪G.

It follows from (3.20) that F ∩G = ∅.
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The sets F , Kp and G are compact in (X, T ), F and G are disjoint, by
(3.24) and (3.25) we have F ⊆ Jα and G ⊆ Jβ and (3.27) holds, so according
to Theorem 2.1, there are u, v, w ∈ N such that F ⊆ Ju, Kp ⊆ Jv, G ⊆ Jw,
(u,w) ∈ D, (v, f(i)) ∈ C, (u, α) ∈ C and (w, β) ∈ C. Note that, by (3.28),
S \ Jµ ⊆ Ju ∪ Jv ∪ Jw holds.

So, if i ∈ N is such that Ii ∩ K ̸= ∅, then there exist u, v, w ∈ N such
that:

(1) S \ Jµ ⊆ Ju ∪ Jv ∪ Jw;
(2) (u,w) ∈ D;
(3) (v, f(i)) ∈ C;
(4) (u, α) ∈ C;
(5) (w, β) ∈ C.
Let Ω be the set of all (i, u, v, w) ∈ N4 for which the statements (1)-(5)

hold. Since S \Jµ is a semicomputable set, the set of all (i, u, v, w) ∈ N4 such
that (1) holds is a c.e. set. It follows now easily that Ω is c.e. Let Γ be the
set of all i ∈ N for which there exist u, v, w ∈ N such that (i, u, v, w) ∈ Ω.
Then Γ is c.e.

We have proved the following: if Ii ∩K ̸= ∅, then i ∈ Γ.
Conversely, suppose i ∈ Γ. Then there exist u, v, w ∈ N such that

(i, u, v, w) ∈ Ω. So the statements (1)-(5) hold. We claim that Ii ∩ S ̸= ∅.
Suppose the opposite, i.e. Ii ∩ S = ∅. Since Jv ⊆ Ii by (3), we have

Jv ∩ S = ∅ and now (1) implies that

S \ Jµ ⊆ Ju ∪ Jw.

From this and (3.23) it follows

M̃ ∪K ∪ L̃ ⊆ Ju ∪ Jw.

Furthermore, c ∈ M̃ ∪ K ∪ L̃ by (3.21), which implies that c ∈ Ju ∪ Jw. If
c ∈ Jw, then c ∈ Jβ by (5), which is a contradiction with (3.25). So c ∈ Ju,

which means that Ju intersects M̃ ∪K ∪ L̃.
Similarly, using (3.22), (4) and (3.24) we conclude that d ∈ Jw, so Jw

intersects M̃ ∪K ∪ L̃.
Hence the sets Ju and Jw are open in (X, T ) and disjoint, their union

contains M̃ ∪ K ∪ L̃ and each of them intersects M̃ ∪ K ∪ L̃ which implies

that M̃ ∪K ∪ L̃ is not connected, a contradiction. Therefore, Ii ∩ S ̸= ∅.
To summarize, for each i ∈ N the following two implications hold:

Ii ∩K ̸= ∅ ⇒ i ∈ Γ,

i ∈ Γ ⇒ Ii ∩ S ̸= ∅.
This means that K is c.e. up to S.

So K is c.e. up to S if a, b /∈ T .
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Let us now consider the case a ∈ T and b /∈ T . Then b is not an endpoint
of (S,K, V ) and let L, L0, . . . , Ln and l0, . . . , ln be as in the previous case.

Furthermore, let for each j ∈ {0, . . . ,m} the sets L1
j , L

2
j and L3

j be defined
as before and let also F and B be defined as before. Let

W = V \ {a, b, l0, . . . , ln}.
The sets

K ∪
m⋃
j=0

L1
j and

⋃
F ∪W ∪

m⋃
j=0

L3
j

are nonempty, disjoint and compact in (X, T ), so there exist µ, µ′ ∈ N such
that ⋃

F ∪W ∪
m⋃
j=0

L3
j ⊆ Jµ and K ∪

n⋃
j=0

L1
j ⊆ Jµ′

and
Jµ ∩ Jµ′ = ∅.

It follows

(3.29) K ∪
m⋃
j=0

L1
j ⊆ S \ Jµ ⊆ K ∪B.

Let ϵ > 0 be such that B(b, ϵ) ∩ Jµ = ∅. By Lemma 3.8 there exist

d ∈ L0, d ̸= b, and L̃ ⊆ L0 such that L̃ is a continuum chainable from b to d

and L̃ ⊆ B(b, ϵ) ⊆ S \ Jµ.
It follows that K ∪ L̃ is a connected set such that

(3.30) K ∪ L̃ ⊆ S \ Jµ.
Since d ∈ L0 and d ̸= b we have d /∈ K (by (3.9)). So we can choose

γ ∈ N such that

(3.31) K ⊆ Jγ and d /∈ Jγ .

Suppose i ∈ N is such that Ii ∩ K ̸= ∅. In the same way as before we
conclude that there exists a compact chain K0, . . . ,Kt in (K, d|K×K) which
covers K from a to b and p ∈ {1, . . . , t− 1} such that

Kp ⊆ Ii.

We define

F = K0 ∪ · · ·Kp−1 and G = Kp+1 ∪ · · · ∪Kt ∪B.

It holds that K ∪B = F ∪Kp ∪G and by (3.29)

S \ Jµ ⊆ F ∪Kp ∪G.

As before, F and G are disjoint and thus there are u, v, w ∈ N such that
F ⊆ Ju, Kp ⊆ Jv, G ⊆ Jw, (u,w) ∈ D, (v, f(i)) ∈ C and (u, γ) ∈ C. Also,
a ∈ F , so a ∈ Ju.
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So if i ∈ N is such that Ii∩K ̸= ∅, then there exist u, v, w ∈ N such that:

(1) S \ Jµ ⊆ Ju ∪ Jv ∪ Jw;
(2) (u,w) ∈ D;
(3) (v, f(i)) ∈ C;
(4) (u, γ) ∈ C;
(5) a ∈ Ju.

Let Ω be the set of all (i, u, v, w) ∈ N4 for which the statements (1)-(5)
hold and let Γ be the set of all i ∈ N for which there exist u, v, w such that
(i, u, v, w) ∈ Ω.

The set T , as a subset of V , is finite and by Proposition 2.3 each point
of T is computable. In particular a is a computable point and, again by
Proposition 2.3, {a} is a semicomputable set in (X, T , (Ii)), which means
that the set of all u ∈ N such that (5) holds is c.e. We conclude that Ω is a
c.e. set and then Γ is also c.e.

We have seen that the following holds: if Ii ∩K ̸= ∅, then i ∈ Γ.
On the other hand, suppose i ∈ Γ. Then there exist u, v, w ∈ N such that

(1)-(5) hold. We want to prove that that Ii ∩ S ̸= ∅.
Suppose Ii ∩ S = ∅. Then

S \ Jµ ⊆ Ju ∪ Jw,

and (3.30) implies

(3.32) K ∪ L̃ ⊆ Ju ∪ Jw.

Clearly Ju and Jw are open and disjoint, so to get a contradiction with the

connectedness of K ∪ L̃ it suffices to prove that both Ju and Jw intersect

K ∪ L̃.
That Ju intersects K ∪ L̃ is obvious from (5). On the other hand we have

d ∈ L̃, so d ∈ K ∪ L̃ and, by (3.32), d ∈ Ju or d ∈ Jw. If d ∈ Ju, then (4)
implies d ∈ Jγ , which contradicts (3.31). Hence d ∈ Jw, which means that Jw
intersects K ∪ L̃.

We conclude that Ii ∩ S ̸= ∅.
To summarize, if Ii ∩ K ̸= ∅, then i ∈ Γ, and if i ∈ Γ, then Ii ∩ S ̸= ∅.

This means that K is c.e. up to S (in the case a ∈ T and b /∈ T ).
Of course, the same conclusion holds if a /∈ T and b ∈ T .
Finally, let us assume a, b ∈ T . As in the previous case we see that a and

b are computable points in (X, T , (Ii)).
Let F be such that (F, {c, d}) ∈ K for some c and d and such that F ̸= K.

Then F and K are disjoint. Otherwise, since F ∩K ⊆ {a, b}∩{c, d} (Remark
3.5), we have a ∈ {c, d} or b ∈ {c, d}, which is impossible since both a and b
are endpoints of (S,K, V ). We also know that K ∩ V = {a, b} and therefore
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we conclude that

S \K = (V \ {a, b}) ∪
⋃

F∈K′

F ̸=K

F.

This means that S \K, as a finite union of compact sets, is a compact set.
So K and S \ K are disjoint compact sets and there exists µ ∈ N such

that S \K ⊆ Jµ and K ∩ Jµ = ∅. It follows that

K = S \ Jµ
and thus K is a semicomputable set in (X, T , (Ii)). It follows from Theorem
2.9 that K is a computable set in (X, T , (Ii)). In particular K is a c.e. set
and thus c.e. up to S.

We have proved that K is c.e. up to S for every K ∈ K′. As noted before,
this is enough to conclude that S is a computable set in (X, T , (Ii)).

References

[1] D.E. Amir and M. Hoyrup. Computability of finite simplicial complexes. In
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Izračunljivost grafova

Iljazović, Z.; Jelić, M.

Sažetak. Ako je svaki poluizračunljiv skup, u bilo

kojem izračunljivom topološkom prostoru, koji je homeomorfan

topološkom prostoru A ujedno i izračunljiv, onda kažemo da A

ima izračunljiv tip. Topološki par (A,B), B ⊆ A ima izračunljiv

tip ako za sve poluizračunljive skupove S i T , u bilo kojem

izračunljivom topološkom prostoru, takve da je S homeomorfan

prostoru A pri homeomorfizmu koji preslikava T u B, vrijedi

da je S izračunljiv. Poznato je da uredeni par (G,E) ima

izračunljiv tip, gdje je G odredeni topološki graf, a E skup

njegovih krajnjih točaka. U ovom radu promatramo općenitije

objekte G̃ čiji su bridovi lančasti kontinuumi i pokazujemo da

(G̃, E) ima izračunljiv tip, gdje je E skup svih krajnjih točaka od

G̃.


