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SPLITTING SUMS OF BINARY POLYNOMIALS

Luis H. Gallardo

Abstract. We study an analogue of a classical arithmetic problem

over the ring of polynomials. We prove that m = 5 is the minimal number
such that the sums of any two distinct polynomials in a set of m polyno-

mials over F2[x] cannot all be of the form xk(x + 1)`.

1. Introduction

It is easy to see that there exist distinct integers a, b such that a+ b is a
power of 2, e.g., a = 3, b = 5. Moreover, there exist distinct integers a, b, c
such that all pairwise sums a+b, a+c, and b+c are powers of 2, e.g., a = −1,
b = 3, c = 5. However, M. S. Smith [7, sequence A352178] proved that there
does not exist a set of four integers {a, b, c, d} such that a + b, b + c, c + d,
and d+ a are all powers of 2. Consequently, no four distinct integers a, b, c, d
exist such that all six pairwise sums among them are powers of 2.

In this paper, we investigate a polynomial analogue of the above problem.
We replace an integer n with a polynomial A(x) having coefficients in {0, 1}
and operate in the field F2 = {0, 1}, where the rule 1 + 1 = 0 replaces the
usual 1 + 1 = 2. We call such polynomials binary polynomials, and the set of
them forms the ring F2[x]. Some basic computations in this ring are shown
after Remark 1.3.

The ring F2[x] serves as a natural analogue of the integers Z, and certain
arithmetic problems become more tractable in this context. We arbitrarily
consider the polynomial xa(x+1)b ∈ F2[x] as a polynomial analogue of 2a+b ∈
Z. This analogy is motivated by the fact that 2 is the smallest prime number
in Z, while x and x+ 1 are the irreducible polynomials of smallest degree in
F2[x]. Moreover, we cannot associate 2 with x alone-ignoring x+ 1-since the
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2 L. H. GALLARDO

rings F2[x] and F2[x+ 1] are essentially the same. In this paper, we focus on
the following problem in the ring F2[x], inspired by the integer case above.

Given a positive integer m, let Sm be a set of m binary polynomials such
that the sum of each pair of distinct elements in Sm splits over F2. That is,
the sum is of the form xk(x+1)` for some non-negative integers k, `, not both
zero.

For m = 2, the answer is straightforward: choose any a ∈ F2[x] and
let b = a + xk(x + 1)`. Then S2 = {a, b} satisfies the conditions for any
(k, `) 6= (0, 0). The goal of this paper is to investigate what happens for
m > 2.

Our main results are as follows:

Theorem 1.1. Assume that a, b, c ∈ F2[x] satisfy

(1.1) a+ b, a+ c, and b+ c split over F2.

That is,

a+ b = xa1(x+ 1)b1 , a+ c = xa2(x+ 1)b2 , b+ c = xa3(x+ 1)b3 ,

with (aj , bj) 6= (0, 0), and a1 ≤ a2 ≤ a3.
Then (up to switching x and x+ 1), the following holds:

(1.2) b = a+ xa1(x+ 1)b2+2s , c = a+ xa1+2s(x+ 1)b2

for some non-negative integer s;

Theorem 1.2. (i) Let a, b, c, d ∈ F2[x] be such that all pairwise sums

a+ b, a+ c, a+ d, b+ c, b+ d, c+ d

split over F2. That is, each sum equals xaj (x+1)bj with (aj , bj) 6= (0, 0)
for j = 1, . . . , 6.

Then (up to switching x and x+ 1), either:

(1.3) b = a+ (x+ 1)2
t

T (1, 3), c = a+ (x+ 1)2
t−1

T (1, 3), d = a+T (1, 3)

where T (1, 3) = xa1(x+ 1)b3 and t is a non-negative integer, or
(1.4)

b = a+(x2
t1

+1)T (1, 3), c = a+(x2
t1

+x2
t1−1

)T (1, 3), d = a+x2
t1
T (1, 3)

for some non-negative integer t1.
(ii) For any m > 4, there do not exist distinct binary polynomials k1, . . . , km

such that ki + kj splits over F2[x] for all i 6= j.

Remark 1.3. Before solving the case m = 4, we checked (by computer)
that there are no solutions for m = 5 when the polynomials a, b, c, d, e ∈ F2[x]
have degrees at most 9.
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Theorem 1.1 is proved in Section 3, and Theorem 1.2 in Section 4. The
tools used in the proofs are introduced in Section 2.

We define σ(A) to be the sum of all divisors of A ∈ F2[x], including 1 and
A itself. For instance:

σ(0) = 0, σ(1) = 1, σ(x) = x+1, σ(x2) = x2+x+1, σ(x2+x) = x2+x,

σ(x2 + x+ 1) = 1 + x2 + x+ 1 = x2 + x.

Here is why: the divisors of x2 are 1, x, and x2, summing to 1 +x+x2. Since
x2 + x+ 1 is irreducible over F2, its only divisors are 1 and itself, so the sum
is 1 + (x2 + x+ 1) = x2 + x. Similarly, if P is irreducible, then

σ(P k) = 1 + P + · · ·+ P k.

Also, if A and B are coprime polynomials in F2[x], then

σ(AB) = σ(A) · σ(B).

Thus,

(1.5) σ(x(x+ 1)) = σ(x) · σ(x+ 1) = (x+ 1)x = x(x+ 1).

A polynomial A ∈ F2[x] is called Mersenne if A = xa(x+1)b +1 for some
a, b ∈ N. This is a polynomial analogue of the Mersenne number 2a+b − 1. If
A is irreducible, we call it a Mersenne prime.

Remark 1.4. A Mersenne polynomial 1 +xa(x+ 1)b is prime if and only
if the trinomial xa+b +xb +1 modulo 2 is irreducible (see [3, Theorem 1.3], see
also [1]). Moreover, they are also related to perfect polynomials (see [3, 4]),
i.e. to fixed points of the function σ over F2[x].

2. Tools

The following lemma is taken from [2, Lemma 5].

Lemma 2.1. Let P,Q ∈ F2[x] be such that P is irreducible, and let n,m
be non-negative integers such that

1 + P + · · ·+ P 2n = Qm.

Then m ∈ {0, 1}.

The next lemma solves a simple exponential equation over F2[x].

Lemma 2.2. The only non-negative integers A,B,C satisfying

(2.6) (x+ 1)A + xB = xC

in F2[x] are either A = 2s, B = 0, C = 2s or A = 2s, B = 2s, C = 0, for some
non-negative integer s.
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Proof. If A = 0, then 1+xB = xC , implying B = C and hence 1+xB =
xB , which is a contradiction. So A ≥ 1. Suppose A is not a power of 2. Then
clearly B = 0 and C = 0 is not possible. If either B or C is zero, say B = 0
and C ≥ 1, then

(2.7) (x+ 1)A = xC + 1.

Dividing both sides by x+ 1, we obtain

(2.8) (x+ 1)A−1 =
xC + 1

x+ 1
= σ(xC−1).

Taking degrees in (2.8) gives C = A, so we have

(2.9) (x+ 1)A−1 = σ(xA−1).

If A − 1 is even, Lemma 2.1 leads to the contradiction A − 1 = 1. Thus A
must be even. Write A = 2su with s ≥ 1 and u > 1 odd. Then (2.7) becomes

(2.10) ((x+ 1)u)2
s

= (xu + 1)2
s

,

which implies

(2.11) (x+ 1)u = xu + 1.

Dividing by x+ 1 again, we get

(2.12) (x+ 1)u−1 = σ(xu−1),

with u− 1 even. But this contradicts Lemma 2.1.
Hence, A = 2s for some s ≥ 0. Substituting into (2.6), we get

(2.13) (x+ 1)2
s

+ 1 = xB + xC + 1,

which simplifies to

(2.14) x2
s

= xB + xC + 1.

Therefore, B = 0, C = 2s or C = 0, B = 2s, as desired.

A Sidon sequence or set is a sequence S = {s0, s1, s2, . . .} of natural
numbers in which all pairwise sums si + sj with i ≤ j are distinct.

The following elementary lemma, whose proof is left to the reader, is
useful. In particular, it implies the well-known result that the set of powers
of 2 forms a Sidon subsequence in Z (see [5, Section C9]).

Lemma 2.3. The only non-negative integers A,B,C satisfying

(2.15) 2A = 2B + 2C

are those with A = B + 1 = C + 1.
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Lemma 2.4. Let A,B,C,D,E, F be non-negative integers such that

(2.16) xA(x+ 1)B + xC(x+ 1)D = xE(x+ 1)F

holds in F2[x]. Then, after reordering and possibly swapping terms, we may
assume A ≤ C ≤ E. Moreover, if C = A, we may also assume B ≥ D.

Proof. We can write (2.16) as

(2.17) xA(x+ 1)B + xC(x+ 1)D + xE(x+ 1)F = 0.

By relabeling, we may assume A ≤ C ≤ E. If C = A, then (2.16) becomes

(2.18) (x+ 1)B + (x+ 1)D = xE−A(x+ 1)F ,

so that we may further assume B ≥ D.

The following lemma plays a key role in our proofs. Moreover, it shows
that the set of split polynomials in F2[x] is far from being a Sidon set; that
is, the sums a+ b with a, b ∈ S and a 6= b are not all distinct.

Lemma 2.5. Let A,B,C,D,E, F be non-negative integers such that

(2.19) xA(x+ 1)B + xC(x+ 1)D = xE(x+ 1)F

in F2[x], with A ≤ C ≤ E. If C = A, then B ≥ D.
Then min(B,D,F ) = D. Moreover,
B 6= D, C = A, F = D, and:
B −D = E −A = 2s for some non-negative integer s.

Proof. Assume that (2.19) holds with A ≤ C ≤ E, and if C = A, then
B ≥ D. Let us write

P := xA(x+ 1)B , Q := xC(x+ 1)D, R := xE(x+ 1)F .

We proceed by dividing the equation

P +Q = R

by the appropriate power of x + 1 to reduce the minimal exponent among
B,D,F to zero.

Step 1: Normalize by minimal power of x+ 1.
Let m = min(B,D,F ). Dividing both sides of the equation by (x+ 1)m,

we obtain

(2.20) xA(x+ 1)B−m + xC(x+ 1)D−m = xE(x+ 1)F−m.

We claim that m = D. Suppose not.
Case 1: m = B < D. Then in (2.20), the left-hand side becomes

xA + xC(x+ 1)D−B .

Since D −B ≥ 1, this is a sum of two split polynomials with distinct powers
of x + 1. But the right-hand side xE(x + 1)F−B is also a split polynomial.
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This contradicts Lemma 2.2, which classifies when such a sum equals a single
split polynomial. Hence, this case cannot occur.

Case 2: m = F < D. Then the right-hand side becomes xE , a monomial.
But then the left-hand side is a sum of two split polynomials, which again
cannot equal a monomial unless one of them is zero, which is excluded by
assumption. Thus, this case also leads to a contradiction.

Therefore, we must have m = D, as claimed.
Step 2: Analyze according to whether B = D or B 6= D.
We now consider (2.19) with D minimal among B,D,F . Divide both

sides by (x+ 1)D, yielding

(2.21) xA(x+ 1)B−D + xC = xE(x+ 1)F−D.

Subcase 1: B = D.
Then (2.21) becomes

(2.22) xA + xC = xE(x+ 1)F−D

so that A < C ≤ E. Taking degrees into (2.22) we obtain that

C = E + (F −D) ≥ E.

Thus, C = E, and F = D. Hence, (2.22) gives the contradiction

xA + xC = xC .

In other words, the case B = D does not happen.
Subcase 2: B > D.
Then (2.21) becomes

xA(x+ 1)B−D + xC = xE(x+ 1)F−D.

Now two cases arise:

• If C = A, then (2.21) becomes

(2.23) (x+ 1)B−D + 1 = xE−A(x+ 1)F−D.

We claim that B − D > F − D ≥ 0. Otherwise, (2.23) gives the
contradiction

(x+ 1)B−D | 1.
Thus, (2.23) implies that (x+1)F−D | 1, so that F = D. Therefore,

(2.23) becomes

(2.24) 1 = xE−A + (x+ 1)B−D.

Apply Lemma 2.2 to (2.24), which implies B −D = E − A = 2s

for some s ≥ 0.
• If C 6= A, then we can write (2.21) as follows:

(2.25) xA
(
(x+ 1)B−D + xC−A

)
= xE(x+ 1)F−D.
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Comparing the exponent of x in both sides of (2.25) we reach the
contradiction A = E. In other words, the case C 6= A does not happen.

This completes the analysis of all cases, and hence the proof.

3. Proof of Theorem 1.1

By adding a+ b to a+ c, we obtain the identity

(3.26) xa1(x+ 1)b1 + xa2(x+ 1)b2 = xa3(x+ 1)b3 .

By Lemma 2.4, we may assume that if a2 = a1, then b1 ≥ b2. Apply
Lemma 2.5 with A = a1, B = b1, C = a2, D = b2, E = a3, and F = b3. We
obtain that min(b1, b2, b3) = b2. Moreover: a2 = a1, b3 = b2, a3 = a1 + 2s,
and b1 = b2 + 2s for some integer s ≥ 0. This completes the proof.

4. Proof of Theorem 1.2

To prove (i), we proceed as in the proof of Theorem 1.1. The proof is
divided into three parts: Part (a), Part (b), and Part (c). In Part (a), we list
all sixteen cases to consider. In Part (b), we give a detailed proof of the two
cases that hold. In Part (c), we prove that two of the remaining fourteen cases
do not occur. The analysis of the other twelve cases (which also do not occur)
is similar and therefore omitted. The computational verification of Part (ii)
completes the proof of the theorem.

Part (a). The list L of the 16 cases to consider is as follows:

L = {[1A, 2A, 3A, 4A], [1B, 2A, 3A, 4A], [1A, 2B, 3A, 4A], [1A, 2A, 3B, 4A]}∪
(4.27)

{[1A, 2A, 3A, 4B], [1B, 2B, 3A, 4A], [1B, 2A, 3B, 4A], [1B, 2A, 3A, 4B]}∪
(4.28)

{[1A, 2B, 3B, 4A], [1A, 2B, 3A, 4B], [1A, 2A, 3B, 4B], [1A, 2B, 3B, 4B]}∪
(4.29)

{[1B, 2A, 3B, 4B], [1B, 2B, 3A, 4B], [1B, 2B, 3B, 4A], [1B, 2B, 3B, 4B]},
(4.30)

where

• 1A: a2 = a1, a4 = a1 + 2s, b1 = b2 + 2s, b4 = b2.
2A: a3 = a1, a5 = a1 + 2t, b1 = b3 + 2t, b5 = b3.
3A: a5 = a4, a6 = a4 + 2u, b4 = b5 + 2u, b6 = b5.
4A: a3 = a2, a6 = a2 + 2v, b2 = b3 + 2v, b6 = b3.
• 1B: a2 = a1 + 2s1 , a4 = a1, b1 = b2 + 2s1 , b4 = b2.

2B: a3 = a1 + 2t1 , a5 = a1, b1 = b3 + 2t1 , b5 = b3.
3B: a5 = a4 + 2u1 , a6 = a4, b4 = b5 + 2u1 , b6 = b5.
4B: a3 = a2 + 2v1 , a6 = a2, b2 = b3 + 2v1 , b6 = b3.
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Part (b). Consider the case [1A, 2A, 3B, 4A], which leads to (1.3). From
2A and 1A, we obtain a5 − a4 = 2t − 2s, while 3B implies a5 − a4 = 2u1 .
Thus, 2t = 2s + 2u1 . By (2.6), we obtain s = t− 1 and u1 = t− 1. From 1A
and 2A, we have b2 + 2s = b3 + 2t, hence b2 − b3 = 2t − 2s. Now 4A implies
b2 − b3 = 2v, so that 2t = 2s + 2v. By (2.6), we get s = t− 1 and v = t− 1.
Putting everything together, we obtain the result.

Similarly, the other valid case [1B, 2B, 3A, 4B] leads to (1.4).
Part (c). Consider the case [1A, 2A, 3A, 4A]. From 1A and 2A, we get

b1 = b2 + 2s = b3 + 2t, so that b2 − b3 = 2t − 2s. Meanwhile, 4A implies
b2 − b3 = 2v, and therefore 2t = 2s + 2v. By (2.6), this yields

(4.31) s = t− 1 and v = t− 1.

From 1A, we have a4− a2 = 2s. From 3A and 4A, we know a6 = a4 + 2u and
a6 = a2 + 2v, so that a4 − a2 = 2v − 2u, and thus (2.6) implies

(4.32) u = v − 1 and s = v − 1.

Combining (4.31) and (4.32), we obtain the contradiction v = s = v−1. This
proves that this case does not occur.

Now consider the case [1B, 2A, 3A, 4B]. From 1B, we get a2 − a1 = 2s1 .
From 4B, we get a3 − a2 = 2v1 . From 2A, we also know a3 = a1, so that
a1−a2 = 2v1 . Therefore, 0 = 2s1 +2v1 , a contradiction. This proves that this
case also does not occur.

Similar arguments show that the remaining twelve cases do not occur.
This proves Part (i) of the theorem.

The proof of Part (ii) follows from a straightforward computation using
GP-PARI. We checked computationally (in a few seconds) that for m = 5,
each of the 64 possible cases contained at least one of the fourteen cases that
do not occur (as shown in the proof of Part (i)).

This completes the proof of the theorem.

5. Conclusion

We translated the problem of distinct sums of powers of 2 into the setting
of distinct sums of certain binary polynomials. While the polynomial case
required a more involved analysis, we obtained a complete solution using
only elementary theoretical properties of these polynomials, along with some
simple computer computations. The problem appears to be difficult—if not
impossible—to solve using purely computational methods.
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