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ERROR ESTIMATES FOR AN EFFECTIVE MODEL FOR
THE INTERACTION BETWEEN A THIN FLUID FILM AND

AN ELASTIC PLATE

Andrijana Ćurković

Abstract. The non-steady flow of an incompressible fluid in a thin

rectangle domain with an elastic plate as the upper part of the boundary

is studied. The flow is modeled by the Stokes equations and governed by
a pressure drop and an external force. Error estimates are obtained for the

approximation by an effective model derived by studying the limiting case

when the thickness of the fluid domain tends to zero.

1. Introduction

Models involving lubrication by a fluid and interaction with a solid body
are widely used in various fields of science (biology, medicine, geophysics,
oceanography, etc.) and have many applications in technology development.
Such models belong to the group of fluid-structure interaction (FSI) models,
and due to their importance and diverse applications, they have been treated
intensively in the last decades (e.g. see [1, 5, 6, 9, 10, 11] and references
within). Mathematics deals with well-posedness, the existence and uniqueness
of solutions, numerical modeling, the determination of approximate solutions
and estimation of their errors, etc. In the case of the presence of a very small
(or large) model parameter (e.g. domain dimension or a characteristic value
of the fluid or structure), the problem can be treated by asymptotic analysis.
This requires the development of an effective, simpler model whose solution
is an approximation of the exact solution. The use of such a simplified model
is justified by theorems on convergence and error estimates.
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2 A. ĆURKOVIĆ

The problem of interaction between a thin layer of incompressible fluid
and a thin elastic plate located on a part of the boundary of the fluid domain
is studied by a full three-dimensional model for both the fluid and the plate [2]
and by their simplified dimensional reduction (e.g. see [4, 9, 10, 11]). Differ-
ent boundary conditions were considered and effective models were derived,
mainly including a six-dimensional parabolic equation [2, 4, 9]. Our work
began by considering fluid and elastic plate models from engineering litera-
ture [7]. The flow of the fluid and the displacement of the plate are governed
by external forces and the pressure drop in the fluid-filled channel. Due to the
assumption of small displacement, the model is linearized, which would corre-
spond to the modeling of high-frequency oscillations with small displacement
of elastic structures.

Earlier, the existence and uniqueness of the solution for the model were
proved [3] and an effective model was derived and justified by the convergence
theorem [4]. In this work, our goal is to estimate the error for the approxi-
mation with the solution of the effective model. This is usually done by using
the error for the test function in the weak formulation. For this purpose,
the regularity of the solution of the effective model is considered. In addition,
a corrector for the error test function is constructed to fulfill the boundary
conditions.

In Section 2 a mathematical model is formulated for the problem under
consideration. Since the existence and uniqueness of the solution and its
estimates are the subject of previous research, only an overview of the results
is given to provide insight into the problem in an easily readable outline. In
Section 3 the effective model is derived. The model construction is presented
only in a brief overview, and the regularity of the solution is given. In Section 4
the approximation error for the first-order approximation in a suitable solution
spaces is proved.

2. Problem formulation

We consider the interaction between an incompressible, viscous fluid fill-
ing a thin two-dimensional channel and an elastic plate located at the top
of the channel. For a small parameter ε > 0 we introduce the fluid do-
main Ωε = (0, 1) × (0, ε) and its boundary parts Γb = Ω

ε ∩ {x2 = 0},
Γε
in = Ω

ε ∩ {x1 = 0}, Γε
out = Ω

ε ∩ {x1 = 1} and Γε
e = Ω

ε ∩ {x2 = ε} at
the bottom, at the entrance, at the exit and at the top of the channel, re-
spectively. The interaction between the fluid and the elastic plate and the
external force cause a transverse displacement of the plate, which leads to
changes in the fluid domain. We assume that the plate is thin and not very
elastic, i.e. that its bending stiffness Bε = B/ε is of the order of 1/ε, and that
the deformation of the fluid domain is consequently small enough to consider
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the fluid flow in an initial state. Considering that the bending stiffness de-
pends on Young’s modulus of elasticity, which is very large, this assumption
makes sense from a physical point of view. The interaction is observed in the
time interval (0, T ε). Our main goal is to estimate the error of the first-order
approximation of the plate displacement and fluid velocity obtained by an as-
ymptotic analysis. This requires a longer time period for thinner channels,
and in our previous research we set the value of T ε = T/ε2, where T is inde-
pendent of ε. We note that the same result as in this paper can be obtained
for any combination of the considered product BεT ε of order 1/ε3.

Fluid flow is described by

ρf∂tu
ε − div σε

f = gε in Ωε × (0, T ε),(2.1)

divuε = 0 in Ωε × (0, T ε),(2.2)

uε = 0 on Γb × (0, T ε),(2.3)

vε = 0 and pε = 0 on Γε
in × (0, T ε),(2.4)

vε = 0 and pε = Aε on Γε
out × (0, T ε),(2.5)

uε(·, 0) = 0 in Ωε,(2.6)

where ρf and µ are the fluid density and viscosity, uε = (uε, vε) and pε are the
fluid velocity and pressure perturbation from the initial value, respectively and
σε
f = −pεI+ µ(∇uε + (∇uε)T ) is the stress tensor of the fluid. The external

force acting on the fluid is denoted by gε and Aε = Aε(t) is a time-dependent
pressure drop between the inlet and outlet regions of the boundary. A non-slip
boundary condition is prescribed at the bottom, the fluid enters the channel
and leaves it orthogonal to the boundary and at the beginning, the entire
structure is in equilibrium and the initial velocity is zero.

By hε we denote the transverse displacement of the elastic plate with
respect to the flat initial configuration. The continuity of the velocity along
the elastic plate leads to the following boundary condition for the fluid:

(2.7) uε = (0, ∂th
ε) on Γε

e × (0, T ε).

Plate displacement is described by

ρsb∂
2
t h

ε +Bε∂4x1
hε = fε − n · σε

f |x2=ε n in (0, 1)× (0, T ε),(2.8)

hε(0, ·) = hε(1, ·) = ∂x1
hε(0, ·) = ∂x1

hε(1, ·) = 0 in (0, T ε),(2.9)

hε(·, 0) = 0 in (0, 1),(2.10)

where n is the outward unit normal on the fluid boundary, ρs, b, B
ε are the

density, thickness and bending stiffness of the plate. The external force acting
on the plate is denoted by fε. The plate equation may include a term with
the second-order spatial derivative of the plate displacement, representing
the contribution of the in-plane tension to the out-of-plane forces. From
a physical point of view, this term can be neglected and does not affect the
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mathematical analysis of the problem, since all estimates and the definitions
of the appropriate spaces are based on the leading fourth-order derivative.
Therefore, we have omitted it. Considering the initial condition (2.6) for the
fluid velocity and the kinematic boundary condition (2.7), we complete our
system with the following initial condition

(2.11) ∂th
ε(·, 0) = 0 in (0, 1).

2.1. Zero pressure drop. To obtain a weak formulation, we multiply the fluid
equation (2.1) by the test function φ = (φ1, φ2) satisfying the boundary
conditions: φ = 0 at the bottom Γb of the channel, φ2 = 0 at the inlet and
outlet part Γε

in ∪ Γε
out and φ1 = 0 at the top Γε

e. As usual, partial integration
is applied, and considering that the force of the fluid on the plate is described
by the stress tensor, we easily obtain

− ρf

∫ T ε

0

∫
Ωε

uε · ∂tφdxdt+ 2µ

∫ T ε

0

∫
Ωε

e(uε) : e(φ) dxdt

− ρsb

∫ T ε

0

∫
Γε
e

∂th
ε∂tφ2 dx1dt+

B

ε

∫ T ε

0

∫
Γε
e

∂2x1
hε∂2x1

φ2 dx1dt

−
∫ T ε

0

∫
Ωε

pε divφdxdt =

∫ T ε

0

∫
Γε
e

fεφ2 dx1dt

+

∫ T ε

0

∫
Ωε

gε ·φdxdt−
∫ T ε

0

∫
Γε
out

Aεφ1 dx2dt

(2.12)

where e(uε) = 1
2 (∇uε + (∇uε)T ) is symmetrized gradient. Fluid flow de-

scribed by pressure drop and external force is common. However, due to the
coupling of the fluid with the plate and the external force on the plate, it can
be assumed that the pressure drop is Aε=0, since the pressure drop can be
represented as part of the external forces. More precisely:

−
∫
Γε
out

Aεφ1 dx2 =

∫ ε

0

Aε

∫ 1

0

∂x1 (φ1x1) dx

=

∫
Ωε

Aεx1∂x1
φ1 dx+

∫
Ωε

Aεφ1 dx

=

∫
Ωε

Aεx1 divφ dx−
∫
Ωε

Aεx1∂x2φ2 dx+

∫
Ωε

Aεφ1 dx

=

∫
Ωε

Aεx1 divφ dx−
∫ 1

0

Aεx1
(
φ2(x1, ε, ·)− φ2(x1, 0, ·)

)
dx1 +

∫
Ωε

Aεφ1 dx

=

∫
Ωε

Aεx1 divφ dx−Aε

∫
Γε
e

x1φ2 dx1 +

∫
Ωε

Aεφ1 dx

The first term can be considered as a linear pressure increase through the
horizontal variable. The second term, also for the linear decrease, changes
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the external force fε on the plate, while the third term can be understood as
an addition to the horizontal component of the external force gε. Although
this change does not affect the existence of the solution, it is clear that it
affects the solution estimates. It should be noted that the external forces
and pressure drop also depend on ε. Their dependence on ε will be defined
later, and it is such that the order of the external forces leads to the expected
order of the solution estimates. Therefore, this linear pressure increase by
the factor Aε does not affect the order of the estimate at the end. From now
on we assume that Aε = 0, and despite this change we continue to use the
symbols for external forces introduced earlier.

2.2. Assumptions. In this subsection we will define the dependence of the
external forces on ε as well as the spaces to which they belong. Let fε and
gε be of the form:

fε(x1, t) = f(x1, ε
2t)

gε(x1, x2, t) = g(x1, x2/ε, ε
2t),

where f and g are defined respectively on (0, 1) × (0, T ) and Ω × (0, T ),
Ω = (0, 1)× (0, 1). We assume

f ∈ H2(0, T ;L2(0, 1)) ∩ L2(0, T ;H2(0, 1)),

g = (g1, g2) ∈ H2(0, T ;L2(Ω)2), such that g1 ∈ L2(0, T ;H2(Ω))

and initial zero forces: f(·, 0) = 0 in (0, 1), g(·, 0) = 0, in Ω.
Since the selection of spaces is part of our earlier work, we will only

give a brief overview of the assumptions. The existence and uniqueness of
the fluid velocity and the plate displacement can be proved by the Galerkin
approximation, assuming only the L2 regularity of the forces. Because of
the prescribed pressure drop, it is not sufficient to prove the existence of the
pressure up to a function of time. Furthermore, since in the fluid structure
problem the force of the fluid acting on the plate is described by the pressure,
the pressure is uniquely determined. The time regularity of the forces of
order H1 is sufficient for a unique existence result for the pressure and also
automatically guarantees the time smoothness of velocity and displacement.
See [3] for details.

The additional regularity in time together with the zero initial values of
the forces make it possible to study the time derivatives of velocity, plate and
pressure also in the context of convergence. This is possible because these time
derivatives are exactly the solutions for the case when the external forces are
∂tf

ε and ∂tg
ε and the boundary conditions remain unchanged.

The reduced problem, as mentioned earlier, involves a sixth-order equa-
tion. Assuming regularity in spatial variables, this equation has a solution in
the L2 sense, i.e., the reduced displacement has H6 regularity in space. See
[4] for details.
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If the reader wishes to avoid details from previous work, one can assume
a C∞ regularity for which this linear problem has a smooth solution.

Remark 2.1. By setting initial values the appearance of the boundary
layer in time is avoided. The values do not need to vanish, but they must be
small enough not to affect the order of the solution. Similar assumptions can
be found in [8], where it is assumed that the external influence vanishes for
small values of time.

2.3. Weak formulation. In this subsection variational formulation of the prob-
lem (2.1)-(2.11) is presented. We introduce the following functional spaces for
the fluid velocity

Vε = {uε ∈ H1(Ωε)2 : divuε = 0, uε = 0 on Γb, u
ε×n = 0 on Γε

in/out∪Γε
e},

V ε = L∞(0, T ε;L2(Ωε)2) ∩ L2(0, T ;Vε),

and for the plate displacement

Dε = L2(0, T ε;H2
0 (0, 1)) ∩H1(0, T ε;L2(0, 1)).

Taking into account that the trace on Γε
e of a test function for variational

formulation (2.12) is in H2(0, 1), we introduce the set Hε of vector functions
φ = (φ1, φ2) ∈ H1(Ωε)2 such that φ = 0 on Γb, φ × n = 0 on Γε

in/out ∪ Γε
e

and φ2 ∈ H2
0 (0, 1) on Γε

e. For each ε we define the solution of the ε-problem
as follows:

Definition 2.2. Vector function (uε, hε, pε) ∈ V ε×Dε×L2(Ωε×(0, T ε))
is a weak solution of the ε-problem if

1. hε(·, 0) = 0 in (0, 1),
2. uε = (0, ∂th

ε) on Γε
e × (0, T ε),

3. for all φ = (φ1, φ2) ∈ H1(0, T ;Hε) such that φ(·, T ε) = 0 in Ωε

variational formulation (2.12) holds.

3. Derivation of the effective model

In this Section, we derive a weak formulation of the effective model, re-
peat some of the results on boundary conditions from previous studies, and
supplement them with the regularity results needed for error estimates.

3.1. Rescaled model. To determine the asymptotic approximation of the so-
lution, it is necessary to define the problem on the fixed domain Ω × (0, T ),
Ω = (0, 1) × (0, 1). We denote the boundary parts of Ω analogously to the
original domain and omit the symbol ε. We introduce rescaled functions

u(ε)(y1, y2, τ) = (u(ε), v(ε))(y1, y2, τ) = uε(y1, εy2, τ/ε
2)

p(ε)(y1, y2, τ) = pε(y1, εy2, τ/ε
2)

h(ε)(y1, τ) = hε(y1, τ/ε
2)
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defined on Ω × (0, T ) and (0, 1) × (0, T ). The introduced scaling leads to
changes in the derivative with respect to the second variable and to time,
while the derivative after the first variable remains unchanged. In the sequel
we use the following notation for rescaled differential operators applied to
vector and scalar functions

∇εu =

[
∂y1u ∂y2u/ε
∂y1v ∂y2v/ε

]
, ∇εp =

[
∂y1p
∂y2p/ε

]
.

The rescaled symmetric part of the gradient and the rescaled divergence are
denoted by

eε(u) =
1

2
(∇εu+ (∇εu)τ ) ,

divε u = ∂y1u+
1

ε
∂y2v.

To define the space V(ε) of rescaled fluid velocity, we rely on earlier defini-
tion of the velocity space for the case ε = 1, changing the incompressibility
condition to divε u = 0. More precisely

V(ε) =
{
u ∈ H1(Ω)2 : divε u = 0, u = 0 on Γb, u× n = 0 on Γin/out ∪ Γe

}
.

Similarly, using ε = 1, we set the test function space H1 as an analogue of Hε

for the fixed domain. Taking into account that dx2 = εdy2 and dt = dτ/ε2,
we can derive from Definition 2.2 the definition of the weak solution of the
rescaled problem.

Definition 3.1. Vector function (u(ε), hε, p(ε)) that belongs to(
L∞(0, T ;L2(Ω)2) ∩ L2(0, T ;V(ε))

)
×D1 × L2(Ω× (0, T ))

is a weak solution of the rescaled ε-problem on [0, T ) if the following hold

1. h(ε)(·, 0) = 0 in (0, 1),
2. u(ε) = (0, ε2∂τh(ε)) on Γe × (0, T ),
3. for all φ ∈ H1(0, T ;H1) such that φ(·, T ) = 0 in Ω the following

variational equation is satisfied

− ρfε

∫ T

0

∫
Ω

u(ε) · ∂τφdydτ +
2µ

ε

∫ T

0

∫
Ω

eε(u(ε)) : eε(φ) dydτ

− ρsbε
2

∫ T

0

∫
Γe

∂τh(ε)∂τφ2 dy1dτ +
B

ε3

∫ T

0

∫
Γe

∂2y1
h(ε)∂2y1

φ2 dy1dτ

− 1

ε

∫ T

0

∫
Ω

p(ε) divε φ dydτ =
1

ε2

∫ T

0

∫
Γe

fφ2 dy1dτ +
1

ε

∫ T

0

∫
Ω

g ·φdydτ.

(3.13)

By standard procedure and careful calculations, it is possible to obtain an
estimate for the fluid velocity and plate displacement using Gronwall’s lemma.
Strictly speaking, the fluid velocity cannot be a test function since its trace
on the top of the channel is not smooth enough. (In this step, we do not use
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the regularity of the solution in time, because we will use the same conclusion
for the time derivatives of the solution and in that case the solution is truly
not smooth enough to serve as a test function.) However, considering that
∂τ∂

2
y1
h · ∂2y1

h = 1/2 · ∂τ (∂2y1
h)2 in the sense of distribution and that partial

integration with respect to time can be applied due to the regularity, this
difficulty can be bypassed. This leads to

∥∂y2u(ε)∥
2
L2(Ω×(0,T ))2 + ε2 ∥∂y1u(ε)∥

2
L2(Ω×(0,T ))2 ≤ Cε4∥∥∂2y1

h(ε)
∥∥2
L∞(0,T ;L2(0,1))

≤ Cε2,
(3.14)

where C is constant independent of ε. From now on we will denote all constants
independent of ε by C. Since the forces acting on the system are smooth in
time and initially equal to zero, it is possible to perform evaluations for the
time derivative of the velocity and plate displacement.

3.2. Pressure estimates. The estimate for the pressure p is obtained by choos-
ing the test function as an appropriate linear combination of L2(Ω) functions
related to the problem

div φ̃ = q in Ω,

φ̃ = 0 on Γb ∪ Γe,

φ̃2 = 0 on Γin ∪ Γout,

∥φ̃∥H1(Ω)2 ≤ C ∥q∥L2(Ω) .

Referring to the density of the chosen linear combination in L2(Ω× (0, T ), we
obtain estimates

∥p(ε)∥L2(Ω×(0,T )) ≤ C,

∥∂xp(ε)∥L2(0,T ;H−1(Ω)) +
1

ε
∥∂yp(ε)∥L2(0,T ;H−1(Ω)) ≤ C.

3.3. Convergence results. The estimates for the solution of the rescaled ε-
problem imply the following claim.

Theorem 3.2. There exists a subsequence, denoted in the same way, of
sequence (u(ε), h(ε), p(ε)) of solutions of the rescaled ε-problems, such that

1

ε2
u(ε)⇀ u = (u, v) weakly in L2(Ω× (0, T ))2,

1

ε2
∂y2

u(ε)⇀ ∂y2
u weakly in L2(Ω× (0, T ))2,

p(ε)⇀ p weakly in L2(Ω× (0, T )),

h(ε)

ε

∗
⇀ h weak ∗ in L∞(0, T ;H2

0 (0, 1)).
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3.4. Boundary conditions. Rescaled functions u(ε) and h(ε) satisfy boundary
conditions on Γb and the edges of the plate. Due to the convergence of ∂y2u(ε)
and ∂2y1

h(ε) in L2(Ω × (0, T ))2 and L∞(0, T ;L2(0, 1)) respectively, limiting
functions fulfill analogous boundary conditions, namely

u|Γb
= 0 in (0, T ),

h(0, ·) = ∂y1
h(0, ·) = h(1, ·) = ∂y1

h(1, ·) = 0 in (0, T ).

Moreover, u|Γe
= 0 in (0, T ).

3.5. Transverse velocity component. Due to the divergence-free condition divε u(ε) =
0, for almost all t and all φ ∈ C∞

0 (Ω)∫
Ω

∂yv(ε)

ε2
φdy = ε

∫
Ω

u(ε)

ε2
∂xφdy → 0 as ε→ 0

which leads to the conclusion ∂yv = 0, and combined with the boundary
condition on Γb gives v = 0.

3.6. Incompressibility condition. Similarly, the test function φ = (0, ε2ψφ2)
is used, where ψ ∈ C1 (0, T ), ψ(T ) = 0 and φ2 ∈ C∞

0 (Ω), for the variational
formulation (3.13) of the rescaled problem∫ T

0

∫
Ω

ψp(ε)∂y2
φ2 dydτ = −ρfε3

∫ T

0

∫
Ω

ψ′v(ε)φ2 dydτ

+ 2µε

∫ T

0

∫
Ω

ψ
1

2

(
1

ε
∂y2

u(ε) + ∂y1
v(ε)

)
∂y1

φ2 dydτ

+ 2µε

∫ T

0

∫
Ω

ψ
1

ε
∂y2v(ε) ·

1

ε
∂y2φ2 dydt− ε

∫ T

0

∫
Ω

ψg2φ2 dydτ.

Since the right-hand side converges to 0 as ε→ 0, it follows,∫ T

0

∫
Ω

ψp∂y2
φ2 dydτ = 0

for any ψ and φ2, so we derive ∂y2
p = 0, i.e. p does not depend on y2.

Furthermore, from the divergence-free condition and the continuity of
the velocity at the top boundary, it is possible to derive an estimate and
convergence that guarantees the fulfillment of the initial condition for the
plate. The same conclusion can be drawn, as stated in subsection 2.2, using
the estimates for ∂τh(ε) in terms of ∂τf and ∂τg. We use the latter approach
and conclude h(·, 0) = 0 in (0, 1) and h ∈ H1(0, T ;H2

0 (0, 1).
Therefore from divε u(ε) = 0, and v(ε)|Γe

= ε2∂τh(ε), for any ψ ∈
C∞

0 (0, T ) and φ = φ(y1) ∈ C∞
0 (0, 1), the following holds

−
∫ T

0

∫
Ω

ψu(ε)∂y1
φdydτ + ε2

∫ T

0

∫ 1

0

∂τh(ε)

ε
ψφdy1dτ = 0.
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After integration by parts, the passing to the limit ε→ 0 yields

−
∫ T

0

∫
Ω

ψu∂y1φdydτ −
∫ T

0

∫ 1

0

hψ′φdy1dτ = 0.

Integration by parts with respect to y1 and τ now yields

(3.15)
∂

∂y1

∫ 1

0

udy2 + ∂τh = 0.

Even if we did not assume regularity in time, this equality would hold, but
in the sense of distributions. But thanks to this additional assumption and
consequently the smoothness of h, we get

(3.16)
∂

∂y1

∫ 1

0

udy2 ∈ L2(0, T ;H2
0 (0, 1)).

3.7. Effective model. It is not difficult to see that, by passing to limit ε → 0
in the weak formulation of the rescaled problem, we obtain that for all φ ∈
H1(0, T ;H1), φ = (φ1, φ2), such that φ(·, T ) = 0 in Ω (the test function
used for the rescaled weak formulation is (φ1, εφ2)) the following variational
formulation holds

µ

∫ T

0

∫
Ω

∂y2u ∂y2φ1 dydτ +B

∫ T

0

∫
Γe

∂2y1
h∂2y1

φ2 dy1dτ

−
∫ T

0

∫
Ω

p divφ dydτ =

∫ T

0

∫
Γe

fφ2 dy1dτ +

∫ T

0

∫
Ω

g1φ1 dydτ.

(3.17)

This weak formulation, together with the previously stated boundary and
initial conditions for u and h and the modified law of incompressibility (3.15)
forms a linear problem that has a solution (limit of a sequence of solutions of
rescaled problems) and this solution is unique [4].

3.8. Pressure boundary conditions. By choosing an appropriate test function
for the variational formulation of the effective problem, it is possible to prove
a higher regularity of pressure, which also gives meaning to the boundary
conditions for the pressure at the entrance and at the exit of the channel. Let
φ = φ(y1) be an arbitrary function in C∞(0, 1) and ψ ∈ C∞(0, T ). By sub-
stituting into the variational equation (3.17) the test function φ1(y1, y2, τ) =
y2(1− y2)ψ(τ)φ(y1), φ2 = 0, remembering that p does not depend on y2, we
get

µ

∫ T

0

∫
Ω

(1− 2y2)ψφ∂y2
udydτ − 1

6

∫ T

0

∫ 1

0

ψφ′ p dy1dτ

=

∫ T

0

∫
Ω

y2(1− y2)ψφg1 dydτ.
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Integration by parts leads to

2µ

∫ T

0

∫ 1

0

ψφ

∫ 1

0

udy2dy1dτ −
1

6

∫ T

0

∫ 1

0

ψφ′ p dy1dτ

=

∫ T

0

∫
Ω

y2(1− y2)ψφg1 dydτ.

(3.18)

Reducing the space of the test function for φ to C∞
c (0, 1), leads to, in the

sense of the distribution, equation

(3.19) 2µ

∫ 1

0

udy2 +
1

6
∂y1p =

∫ 1

0

y2(1− y2)g1dy2.

From (3.16) and the assumptions 2.2 we conclude ∂y1
p ∈ L2(0, T ;H2(0, 1)).

Considering again not necessarily compactly supported test functions, we ob-
tain from (3.18) and (3.19) that for all φ = φ(y1) ∈ C∞(0, 1) holds

−1

6

∫ T

0

ψ
(
p(1, ·)φ(1)− p(0, ·)φ(0)

)
dτ = 0,

leading to boundary conditions p = 0 on Γin and Γout.

4. Error estimates

We obtain the effective velocity (u, v) = (u, 0) as the limit of the solu-
tions of the rescaled problem and as the solution of the effective model. The
divergence of this velocity is not 0, and the question arises how good this
approximation is for the velocity of an incompressible fluid and how to in-
terpret the incompressibility in the effective model appropriately. To obtain
the incompressibility in the approximation, we need a higher order term (in
epsilon) for the transverse velocity. Therefore, we correct this velocity compo-
nent with v1, which we construct as follows. From the variational formulation
(3.17) of the effective model, considering the pressure regularity, it follows
that in L2(0, T ;H2(Ω)) holds

µ∂2y2
u = ∂y1

p− g1.

By integrating equation twice with respect to y2, we get

µu(y1, y2, τ) = ∂y1
p(y1, τ)

y22
2
−
∫ y2

0

∫ η

0

g1(y1, ξ, t) dξdη+C1(y1, τ)y2+C2(y1, τ).

If we change the order of integration, we get

µu(y1, y2, τ) = ∂y1
p(y1, τ)

y22
2
−
∫ y2

0

(y2−ξ)g1(y1, ξ, t) dξ+C1(y1, τ)y2+C2(y1, τ).
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Due to the boundary condition u|Γb
= 0 we have C2(y1, τ) = 0, while C1 is

determined from the boundary condition u|Γe
= 0:

(4.20) C1(y1, τ) = −∂y1p(y1, τ)

2
+

∫ 1

0

(1− ξ)g1(y1, ξ, τ) dξ.

Finally, the longitudinal component of the fluid velocity has the following
form

u(y1, y2, τ) =
y2(y2 − 1)

2µ
∂y1p(y1, τ)

− 1

µ

∫ y2

0

(y2 − ξ)g1(y1, ξ, τ) dξ +
y2
µ

∫ 1

0

(1− ξ)g1(y1, ξ, τ) dξ.

(4.21)

Note that u ∈ L2((0, T );H2(Ω)). Incompressibility, interpreted as div(u, v1) =
0, and the boundary condition v1|Γb

= 0 imply that the transverse component
of velocity is defined by

v1(y1, y2, τ) = −
∫ y2

0

∂y1u(y1, η, τ) dη = −
(
y32
3

− y22
2

)
∂2y1

p(y1, τ)

2µ

+
1

µ

∫ y2

0

∫ η

0

(η − ξ)∂y1
g1(y1, ξ, t) dξdη −

∫ y2

0

η

µ

∫ 1

0

(1− ξ)∂y1
g1(y1, ξ, τ) dξdη

transformed by changing the order of integration to

v1(y1, y2, τ) = −
(
y32
3

− y22
2

)
∂2y1

p(y1, τ)

2µ

+

∫ y2

0

(y2 − ξ)2

2µ
∂y1

g1(y1, ξ, τ) dξ −
y22
2µ

∫ 1

0

(1− ξ)∂y1
g1(y1, ξ, τ) dξ.

Note that because of the (3.15) boundary condition v1|Γe
= ∂τh holds on the

top boundary. It also holds v1 ∈ L2((0, T );H1(Ω)) and furthermore v1 has
the second derivative with respect to y2 in L2(Ω× (0, T )).

In order to estimate the approximation error, we define

uerror(ε) =

(
u(ε)

ε2
,
v(ε)

ε3

)
− (u, v1)

perror(ε) = p(ε)− p

herror(ε) = h(ε)/ε− h.

Let φ = (φ1, φ2) be an arbitrary function from H1(0, T ;H1). Using the test
functions (εφ1, ε

2φ2) and φ for weak formulations of the rescaled problem
(3.13) and the effective model (3.17), respectively, and subtracting them we
obtain
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µ

∫ T

0

∫
Ω

∂y2
uerror(ε)∂y2

φ1 dydτ +B

∫ T

0

∫
Γe

∂2y1
herror(ε)∂

2
y1
φ2 dy1dτ

−
∫ T

0

∫
Ω

perror(ε) divφdydτ = ε

∫ T

0

∫
Ω

g2φ2 dydτ

+ ρfε
2

∫ T

0

∫
Ω

u(ε) · ∂τ (φ1, εφ2) dydτ + ρsbε
4

∫ T

0

∫
Γe

∂τh(ε)∂τφ2 dx1dτ

− µ

∫ T

0

∫
Ω

(
2∂y1

u(ε)∂y1
φ1 + ∂y2

u(ε)∂y1
φ2 +

1

ε
∂y1

v(ε)∂y2
φ1

+ε∂y1v(ε)∂y1φ2 +
2

ε
∂y2v(ε)∂y2φ2

)
dydτ

(4.22)

It would be ideal to use uε
error for the test function. This function is smooth

enough, but the problem is that the second velocity component does not meet
the boundary conditions at the inlet and outlet.

4.1. Correction for the test function. Let us define

vin(y2, τ) = v1(0, y2, τ)

vout(y2, τ) = v1(1, y2, τ).

Due to the boundary condition v1|Γe
= ∂τh we have vin(1, τ) = vout(1, τ) = 0

and due to ∂y2
v1 = ∂y1

u and the choice of C1 in (4.20) we have ∂y2
vin(1, τ) =

∂y2
vout(1, τ) = 0. It is easy to see that the same boundary conditions are met

for y2 = 0.
For 0 < ε≪ 1 we define µε : [0, 1] → [0, 1] in C∞(0, 1) such that:

µε(y1) =

{
1− y1, y1 < ε

0, y1 > 2ε.

Then for

φ̃(ε) = (µε(y1)∂y2
vin,−µ′

ε(y1)vin) + (−µε(1− y1)∂y2
vout,−µ′

ε(1− y1)vout)

we have

div φ̃(ε) = 0 in Ω,

φ̃(ε) = 0 on Γb ∪ Γe,

φ̃(ε) = (0, v1) on Γin ∪ Γout

and obviously

(4.23) ∥φ̃(ε)∥L2(Ω)2 + ∥∂y2φ̃(ε)∥L2(Ω)2 ≤ Cε.

After partial integration by time of the terms in (4.22) containing the time
derivative of the solution, we can use φerror(ε) = uerror(ε) − φ̃(ε) as a test
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function. We note that the trace of this function at the top boundary is
(0, ∂τherror(ε)).

4.2. Error estimates on the fixed domain. We substitute the selected test func-
tion in (4.22). Let us highlight some general points about the derivation of
estimates:

1. (u, v1) is a function defined by the effective model whose regularity we
have proved. This function has a norm bounded by a constant that
depends on the given functions.

2. The corrector φ̃(ε) has a norm bound (4.23).
3. Sometimes v1 is combined with the corrector φ̃2(ε) and the norm of

their sum is bounded by C.
4. On the right-hand side, the norms of the different terms will appear

with a negative sign, so we will estimate them with zero.
5. We will use estimates (3.14). Let’s recall that the assumption 2.2

enable us to estimate time derivatives (in terms of the time derivatives
of the given functions) in the same order of ε.

Let’s write out the terms of the last integral in (4.22) with the chosen test
function. For the first term in the integral, due to the incompressibility, the
following applies:

−
∫ T

0

∫
Ω

2∂y1
u(ε)∂y1

φerror1(ε) dydτ = −
∫ T

0

∫
Ω

2

ε
∂y2

v(ε)∂y2
φerror2(ε) dydτ

= −2

ε

∫ T

0

∫
Ω

∂y2
v(ε)∂y2

(
v(ε)

ε3
− v1 − φ̃2(ε)

)
dydτ

= −2ε2
∫ T

0

∫
Ω

∂y2φerror2(ε)∂y2φerror2(ε) + ∂y2(v1 + φ̃2(ε))∂y2φerror2(ε) dydτ

≤ 2ε2
(
−∥∂y2

φerror2(ε)∥2L2(Ω×(0,T )) + C∥∂y2
φerror2(ε)∥L2(Ω×(0,T ))

)
≤ 2ε2

(
−∥∂y2

φerror2(ε)∥2L2(Ω×(0,T )) +
C2

4
+ ∥∂y2

φerror2(ε)∥2L2(Ω×(0,T ))

)
≤ Cε2.

Bearing in mind that the limit of transverse velocities is 0 and that this
statement comes from the condition of incompressibility, it is to be expected
that we must use incompressibility in deriving the estimates. Let us derive
additional calculations for the smooth function ψ, which reaches value 0 on
Γin and Γout : ∫

Ω

∂y2
u(ε)∂y1

ψ dy = −
∫
Ω

u(ε)∂y2
∂y1

ψ dy

=

∫
Ω

∂y1
u(ε)∂y2

ψ dy = −1

ε

∫
Ω

∂y2
v(ε)∂y2

ψ dy.
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The equality is true by density for all H1 functions vanishing on Γin and Γout.
Similarly, for all smooth functions ψ vanishing on Γb and Γe we have:

(4.24)

∫
Ω

∂y1
v(ε)∂y2

ψ dy = −
∫
Ω

v(ε)∂y1
∂y2

ψ dy =

∫
Ω

∂y2
v(ε)∂y1

ψ dy

and again we can impose the density argument.
Since the test function vanishes as described, the sum of the second and

the third term of the integral results in

−
∫ T

0

∫
Ω

∂y2u(ε)∂y1φerror2(ε) +
1

ε
∂y1v(ε)∂y2φerror1(ε) dydτ

= −
∫ T

0

∫
Ω

−1

ε
∂y2v(ε)∂y2φerror2(ε) +

1

ε
∂y2v(ε)∂y1φerror1(ε) dydτ

=

∫ T

0

∫
Ω

1

ε
∂y2v(ε)∂y2φerror2(ε) +

1

ε
∂y2v(ε)∂y2φerror2(ε) dydτ

which sums up with the last term to get 0. Finally, for the fourth term we
have

−
∫ T

0

∫
Ω

ε∂y1
v(ε)∂y1

(
v(ε)

ε3
− v1 − φ̃2(ε)

)
dydτ ≤ 0 + ε · Cε · C ≤ Cε2.

Now, one can easily see that from (4.22) we can obtain an estimate

µ ∥∂y2
uerror(ε)∥2L2(Ω×(0,T )) +B

∥∥∂2y1
herror(ε)(·, T )

∥∥2
L2(Γe)

≤ µ ∥∂y2uerror(ε)∥L2(Ω×(0,T )) · ∥∂y2 φ̃1(ε)∥L2(Ω×(0,T ))

+ ε ∥g2∥L2(Ω×(0,T )) ∥φerror2(ε)∥L2(Ω×(0,T )) + Cε2

≤ µ

4
∥∂y2

uerror(ε)∥2L2(Ω×(0,T )) +
1

µ
∥∂y2

φ̃1(ε)∥2L2(Ω×(0,T ))

+ Cε
(
∥uerror2(ε)∥L2(Ω×(0,T )) + ∥φ̃2(ε)∥L2(Ω×(0,T ))

)
+ Cε2

≤ µ

2
∥∂y2

uerror(ε)∥2L2(Ω×(0,T )) + Cε2.

It is easy to see that the test function may include a time step function
by which the displacement at time t would be estimated instead of T . This
proves the assertion of the next theorem.

Theorem 4.1. For the problem presented, the following error estimates
apply

∥∂y2uerror(ε)∥L2(Ω×(0,T )) +
∥∥∂2y1

herror(ε)
∥∥
L∞(0,T ;L2(Γe))

≤ ε.
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5. Discussion

In order not to perform simple and straightforward calculations or to
repeat ideas already applied, no error estimates for pressure and transverse
velocity are given. It should be noted that errors in the same order can
be determined and that it is possible to derive them by following the idea
presented in subsection 3.2 for pressure, and for velocity verror(ε) only by a
slightly different estimate in the first term of the last integral in (4.22).

Error estimation can also be performed for higher-order approximations.
If the force g2 does not depend on y1, neither do the pressure approximations.
If the force g2 depends on y1, so do the second and higher-order pressure
approximations, which changes some calculations, but not the final conclusion
on error estimation for higher order approximations.

From what has been presented, it is easy to derive estimates of the ap-
proximation error for the original domain Ωε×(0, T ε). Apart from the deriva-
tions, it is, of course, also possible to find estimates for the velocity and the
displacement itself by using the Poincare inequality.

In summary, expected estimates are derived that rigorously justify the
effective model. The model itself can be simplified from the variational for-
mulation to a parabolic equation of sixth degree. The regularity presented
here justifies the computation, usually called formal (since the regularity is
not known in advance), and it is easy to perform.
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Ocjene greške za efektivni model interakcije tankog sloja fluida i
elastične ploče

Andrijana Ćurković

Sažetak. Promatramo nestacionarni tok inkompresibilnog

fluida u tankoj pravokutnoj domeni s elastičnom pločom kao gor-

njim rubom. Tok je modeliran Stokesovim jednadžbama pod

djelovanjem padom tlaka i vanjske sile. Ocjene greške izve-

dene su za aproksimaciju efektivnim modelom koji je dobiven

proučavanjem rješenja problema kada debljina domene fluida teži

k nuli.
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