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A NOTE ON THE CHEBYSHEV INEQUALITY AND
RELATED INEQUALITIES FOR FIBONACCI NUMBERS

Vera Čuljak, Josip Pečarić

Abstract. Some new results for Fibonacci sequence concerning the

Chebyshev type inequalities are proved.

1. Introduction

The Chebyshev inequality is the important inequality in mathematical
analysis which state that

(1.1)

n∑
j=1

pj

n∑
i=1

pixiyi ≥
n∑

j=1

pjxj

n∑
i=1

piyi

where x = (x1, x2, . . . , xn),y = (y1, y2, . . . , yn) are n-tuples monotonic in
the same direction, and p = (p1, p2, . . . , pn) is a positive n-tuple.

If x and y are monotonic in opposite direction then the reverse of the
inequality (1.1) holds.

In either case equality holds iff either x1 = x2 = · · · = xn or
y1 = y2 = · · · = yn.

The Chebyshev inequality can be generalized for m nonnegative n-tuples
xj = (xj1, xj2, . . . , xjn), j = 1, 2, . . . ,m : m > 2) which are monotonic in the
same direction. Then holds
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(1.2)
( n∑
i=1

pi
)m−1

n∑
i=1

pi
( m∏
j=1

xji

)
≥

m∏
j=1

( n∑
i=1

pixji

)
.

If all n-tuples x are positive, then the equality in (1.2) holds iff at least
m− 1 n-tuples among x1, . . . ,xm have identical components.

Let denote difference of the Chebyshev inequality

(1.3) Tn(x,y;p) =

n∑
i=1

pi

n∑
i=1

pixiyi −
n∑

j=1

pjxj

n∑
i=1

piyi.

We will also consider inequalities related to the Chebyshev inequality. The
Grüss inequality provides bound for the diference in the Chebyshev inequality
and the Karamata inequality is an analogous result for the ratio (see [7] p.
296, 298 and [6] p. 206, 212). There are a number of further refinements and
generalizations of Grüss inequality.

Let’s recall the definition of the Fibonacci sequence Fn: Fn is the nth

Fibonacci number defined by F0 = 0, F1 = 1 and for all n ≥ 2,

Fn = Fn−1 + Fn−2.

Furthermore, for Fibonacci numbers, let’s state some known identities
(see [4] p. 11 and p. 61):

n∑
i=1

F 2
i = FnFn+1,(1.4)

n∑
i=1

Fi = Fn+2 − 1,(1.5)

n∑
i=1

F2i−1 = F2n,(1.6)

n∑
i=1

F2i = F2n+1 − 1.(1.7)

n∑
i=1

i Fi = Fn+2 − Fn+3 + 2,(1.8)

n∑
i=1

F4i−2 = F 2
2n,(1.9)

n∑
i=1

(
n

i

)
F2i = F2n.(1.10)
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In this note we are inspired by the Popescu and Diaz Barrero result for
Fibonacci numbers Fn published in [8]:

Theorem A 1. Let n be a positive integer and l be an integer. Then
holds

(1.11) (FnFn+1)
2 ≤

n∑
i

F l
i

n∑
i

F 4−l
i

The authors used the Jensen inequality for convex functions and the proof
reveals that (1.11) is valid for all n ∈ N and all l ∈ R. Recently, Alzer and
Luca in [2] obtained the following extension of this result by using the Cauchy-
Schwarz inequality.

Theorem A 2. Let r, s ∈ R with r + s ≥ 4. Then for n ≥ 1, holds

(1.12) (FnFn+1)
2 ≤

n∑
i

F r
i

n∑
i

F s
i

The sign of equality is valid in (1.12) iff n = 1, 2 or n ≥ 3, r = s = 2.

Alzer and Kwong in [1] determined by using computer software all real
parameters r and s such that inequality (1.12) holds for n ≥ 1.

We use the reverse Chebyshev inequality to get the result in Theorem A1
and result in Theorem A2 for special case r + s = 4.

Theorem A 3. Let n ∈ N and c ∈ R. Then holds

(1.13) (FnFn+1)
2 ≤

n∑
j=1

F 2+c
j

n∑
i=1

F 2−c
i .

Equality holds iff either n = 1, 2 or n ≥ 3, c = 0.

Proof. Let us use the reverse Chebyshev inequality (1.1) for n-tuples
x = (x1, x2, . . . , xn),y = (y1, y2, . . . , yn) which are monotonic in the oposite
direction and p = (p1, p2, . . . , pn) is a positive n-tuple with the following
substitutions: pi = F 2

i , xi = F c
i and yi = F−c

i for i = 1, 2, . . . , n and c ∈ R.

n∑
j=1

F 2
j

n∑
i=1

F 2
i F

c
i F

−c
i ≤

n∑
j=1

F 2
j F

c
j

n∑
i=1

F 2
i F

−c
i

n∑
j=1

F 2
j

n∑
i=1

F 2
i ≤

n∑
j=1

F 2+c
j

n∑
i=1

F 2−c
i .

By using the identities (1.4) we get the inequaliy (1.13).
The condition for the equality in the Chebyshev inequality give us the

condition for the equality in (1.13).
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Remark 1.1. For l = c + 2 in (1.13) we get the inequality in Theorem
A1 and for r = 2 + c and s = 2 − c we get the inequality in Theorem A2 if
r + c = 4.

2. Chebyshev inequality for Fibonacci numbers

Theorem 2.1. Let n ∈ N, and p = (p1, p2, · · · , pn) be a positive n-

tuple with Pn =
n∑

i=1

pi. Let f and g be real valued functions. If f and g are

monotonic in the same direction then holds

(2.14) Pn

n∑
i=1

pif(Fi) g(Fi) ≥
n∑

j=1

pj f(Fj)

n∑
i=1

pi g(Fi).

If f and g are monotonic in opposite direction then the reverse of the
inequality (2.14) holds.

Proof. We use the Chebyshev inequality for n -tuples x = (x1, x2, . . . , xn),y =
(y1, y2, . . . , yn) and for positive n-tuple p = (p1, p2, . . . , pn) with the following
substitutions: xi = f(Fi) and yi = g(Fi), i = 1, 2, . . . , n for functions f and
g which are monotonic in the same direction.

Corollary 2.2. Let n ∈ N. If r and s ∈ R such that r s > 0 then holds

(2.15) FnFn+1

n∑
i=1

F 2+r+s
i ≥

n∑
j=1

F 2+r
j

n∑
i=1

F 2+s
i .

If r and s ∈ R such that r s < 0 then holds the revers of inequality (2.15).

Proof. We apply (2.14) for functions f(x) = xr and g(x) = xs such that
rs > 0 with substitutions pi = F 2

i and xi = F r
i , yi = F s

i . The identities (1.4)
give us the inequality (2.15).

Remark 2.3. For r = c, s = −c for c ∈ R we get a result in Theorem A3.

Theorem 2.4. Let n ∈ N and p = (p1, p2, . . . , pn) is a positive n-tuple

and Pn =
n∑

i=1

pi. Let f1, f2, f3, . . . , fm : m > 2 be nonnegative real valued

functions. If f1, f2, f3, . . . , fm are monotonic in the same direction then holds

(2.16)
(
Pn

)m−1
n∑

i=1

pi
( m∏
j=1

fj(Fi)
)
≥

m∏
j=1

( n∑
i=1

pi fj(Fi)
)
.

Proof. Let us use the Chebyshev inequality (??) for m nonnegative n-
tuples xj = (xj1, xj2, . . . , xjn), j = 1, 2, . . . ,m : m > 2) which are monotonic
in the same direction. with the following substitutions: xji = fj(Fi), j =
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1, . . . ,m i = 1, 2, . . . , n for functions fj j = 1, . . . ,m which are positive and
monotonic in the same direction.

Corollary 2.5. Let n ∈ N and r1, r2, r3, . . . , rm ∈ R : m > 2.

If
m∏
j=1

rj > 0 then holds

(2.17)
(
FnFn+1

)m−1
n∑

i=1

F
2+

m∑
j=1

rj

i ≥
m∏
j=1

( n∑
i=1

F
2+rj
i

)
.

Proof. Let us use the Chebyshev inequality (1.2) for m nonnegative n-
tuples xj = (xj1, xj2, . . . , xjn), j = 1, 2, . . . ,m : m > 2) which are monotonic
in the same direction. with the following substitutions: xji = fj(Fi), j =

1, . . . ,m i = 1, 2, . . . , n for functions fj(x) = xrj , j = 1, . . . ,m. If
m∏
j=1

rj > 0

then functions fj are positive and monotonic in the same direction. We are
setting in (1.2):

pi = F 2
i and xji = F

rj
i for j = 1, . . . ,m; i = 1, . . . , n.

By using the identities (1.4) we get the inequaliy (2.17).

Remark 2.6. As special cases of Theorem 2.1 and Theorem 2.4 we can
establishe new inequalities if we select for weights p = (p1, p2, . . . , pn) the

following substitutions and coredponding Pn =
n∑
i

pi according identities (1.4)

– (1.10) respectively:

pi = F 2
i , pi = Fi, pi = F2i−1, pi = F2i, pi = i Fi, pi = F4i−2, pi =

(
n

i

)
F2i.

3. Chebyshev inequality for Lucas nubers

Let’s recall the definition of the Lucas numbers Ln: Ln is the nth Lucas
number defined by L0 = 2, L1 = 1 and for all n ≥ 1,

Ln = Ln−1 + Ln−2

or

Ln = Fn+1 + Fn−1.

Furthermore, for Lucas numbers, let’s state some known identities (see
[4] p. 98):
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n∑
i=1

L2
i = LnLn+1 − 2,(3.18)

n∑
i=1

L2i−1 = L2n − 2,(3.19)

n∑
i=1

L2i = L2n+1 − 1,(3.20)

n∑
i=1

i Li = nLn+2 − Ln+3 + 4.(3.21)

By using reverse Chebyshev inequality we can obtain inequality related
to Theorem 3 for Lucas numbers.

Theorem A 4. Let n ∈ N and c ∈ R. Then holds

(3.22)
(
LnLn+1 − 2

)2 ≤
n∑

j=1

L2+c
j

n∑
i=1

L2−c
i .

Remark 3.1. As special case of Theorem 4 we can establishe new inequal-
ities for Lucas numbers if we select for weights p = (p1, p2, . . . , pn) the fol-

lowing substitutions and coredponding Pn =
n∑
i

pi according identities (3.18)

– (3.21) respectively:

pi = L2
i , pi = L2i−1, pi = L2i, pi = i Li.

We can state similar reslut as Theorem 2.1 and Theorem 2.4 for Lucas
numbers.

For mixed identities of Fibonacci and Lucas number (see [4] p. 110):

n∑
i=1

(
n

i

)
Fn−iFi =

1

5
(2nLn − 2),(3.23)

n∑
i=1

(
n

i

)
Ln−iFi = 2nFn.(3.24)

we present the following corollaries.

Corollary 3.2. Let n ∈ N. If r and s ∈ R such that r s > 0 then for
Fibonacci numbers and Lucas numbers holds
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(3.25)

1

5
(2nLn − 2)

n∑
i=1

(
n

i

)
Fn−iF

1+r+s
i ≥

n∑
j=1

(
n

i

)
Fn−iF

1+r
j

n∑
i=1

(
n

i

)
Fn−iF

1+s
i .

(3.26)

(2nFn)

n∑
i=1

(
n

i

)
Ln−iF

1+r+s
i ≥

n∑
j=1

(
n

i

)
Ln−iF

1+r
j

n∑
i=1

(
n

i

)
Ln−iF

1+s
i .

If r and s ∈ R such that r s < 0 then for Fibonacci numbers and Lucas
number holds the reverse of inequality (3.25) and (3.26).

Proof. We apply (2.14) for functions f(x) = xr and g(x) = xs such
that rs > 0 with substitutions pi =

(
n
i

)
Fn−iFi or pi =

(
n
i

)
Ln−iFi and xi =

F r
i , yi = F s

i . The identities (3.23) and (3.24) give us the inequality (3.25)
and (3.25) respectively.

4. Grüsss inequality and Karamata inequality for Fibonacci
numbers and Lucas numbers

The following theorem pointed out the Grüss inequality for Fibonacci
numbers.

Theorem 4.1. Let n ∈ N, and p = (p1, p2, . . . , pn) be a positive n-tuple

with Pn =
n∑

i=1

pi. Let f and g be real valued functions such that it holds

(4.27) 0 < m1 < M1, 0 < m2 < M2,m1 ≤ f(Fi) ≤ M1, m2 ≤ g(Fi) ≤ M2.

Then holds

(4.28)
∣∣

n∑
i=1

pif(Fi)g(Fi)

Pn
−

n∑
j=1

pjf(Fj)

Pn

n∑
i=1

pig(Fi)

Pn

∣∣ ≤ 1

4
(M1−m1)(M2−m2)

Proof. As a complement of the Chebyshev inequality holds (discrete)
weighted Grüss’ inequality (see [7], p.296) holds: We use the Grüss inequality
for n -tuples x = (x1, x2, . . . , xn),y = (y1, y2, . . . , yn) and for positive n-
tuple p = (p1, p2, . . . , pn) with the following substitutions: xi = f(Fi) and
yi = g(Fi), i = 1, 2, . . . , n for functions f and g such that the condition (4.27)
is satisfied.

Corollary 4.2. Let n ∈ N, n > 2.
If r and s ∈ R such that r s > 0 then holds

(4.29)∣∣ 1

FnFn+1

n∑
i=1

F 2+r+s
i − 1

(FnFn+1)2

n∑
j=1

F 2+r
j

n∑
i=1

F 2+s
i

∣∣ ≤ 1

4
(F r

n − 1)(F s
n − 1)



8 V. ČULJAK, J. PEČARIĆ

If r and s ∈ R such that r s < 0 then holds

∣∣ 1

FnFn+1

n∑
i=1

F 2+r+s
i − 1

(FnFn+1)2

n∑
j=1

F 2+r
j

n∑
i=1

F 2+s
i

∣∣ ≤ 1

4
(F r

n − 1)(1− F s
n)

Proof. We apply (4.29) for functions f(x) = xr and g(x) = xs such that
r s > 0 which satisied (4.27) with substitutions pi = F 2

i . The identities (1.4)
give us the inequality (4.29). We proceed analogously for the case r s < 0.

Corollary 4.3. Let n ∈ N, n > 2.
If r and s ∈ R such that r s > 0 then for Fibonacci numbers i Lucas

numbers holds∣∣ 1

FnFn+1

n∑
i=1

F 2+r
i Ls

i −
1

(FnFn+1)2

n∑
j=1

F 2+r
j

n∑
i=1

F 2
i L

s
i

∣∣ ≤ 1

4
(F r

n − 1)(Ls
n − 1)

If r and s ∈ R such that r s < 0 then for Fibonacci numbers i Lucas
numbers holds∣∣ 1

FnFn+1

n∑
i=1

F 2+r
i Ls

i −
1

(FnFn+1)2

n∑
j=1

F 2+r
j

n∑
i=1

F 2
i L

s
i

∣∣ ≤ 1

4
(F r

n − 1)(1− Ls
n)

Recall now the Karamata inequality (see [7] p. 298 and [6] p. 212):

K−2 ≤

( n∑
i=1

pixi

)( n∑
i=1

piyi
)

Pn

n∑
i=1

pixi yi

≤ K2,(4.30)

K =

√
m1 m2 +

√
M1 M2√

m1 M2 +
√
M1 m2

≥ 1(4.31)

where x = (x1, x2,..., xn),y = (y1, y2,..., yn) are n-tuples such that the condi-
tion

(4.32) 0 < m1 < M1, 0 < m2 < M2,m1 ≤ xk ≤ M1, m2 ≤ yk ≤ M2;

holds and p = (p1, p2,..., pn) is a positive n-tuple with Pn =
n∑

j=1

pj .

We pointed out the Katramata inequality for Fibonacci numbers.

Theorem 4.4. Let n ∈ N, and p = (p1, p2,..., pn) be a positive n-tuple

with Pn =
n∑

i=1

pi. Let f and g be real valued functions such that it holds

(4.33) 0 < m1 < M1, 0 < m2 < M2,m1 ≤ f(Fi) ≤ M1, m2 ≤ g(Fi) ≤ M2.
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Then holds

K−2 ≤

n∑
i=1

pif(Fi) ·
n∑

i=1

pig(Fi)

Pn

n∑
i=1

pif(Fi) g(Fi)
≤ K2,(4.34)

K =

√
m1 m2 +

√
M1 M2√

m1 M2 +
√
M1 m2

≥ 1.(4.35)

Proof. We use the Karamata inequality (see [7] p. 298 and [6] p. 212)
for n -tuples x = (x1, x2, . . . , xn),y = (y1, y2, . . . , yn) and for positive n-
tuple p = (p1, p2, . . . , pn) with the following substitutions: xi = f(Fi) and
yi = g(Fi), i = 1, 2, . . . , n for functions f and g such that the condition (4.33)
is satisfied.

Corollary 4.5. Let n ∈ N.
If r and s ∈ R such that r s > 0 then holds

K−2 ≤

n∑
i=1

F 2+r
i ·

n∑
i=1

F 2+s
i

FnFn+1

n∑
i=1

F 2+r+s
i

≤ K2,(4.36)

K =
1 +

√
F r+s
n√

F s
n +

√
F r
n

≥ 1(4.37)

If r and s ∈ R such that r s < 0 then holds

K−2 ≤

n∑
i=1

F 2+r
i ·

n∑
i=1

F 2+s
i

FnFn+1

n∑
i=1

F 2+r+s
i

≤ K2,(4.38)

K =

√
F s
n +

√
F r
n

1 +
√
F r+s
n

≥ 1(4.39)

Proof. We apply (4.35) for functions f(x) = xr and g(x) = xs such that
r s > 0 with substitutions pi = F 2

i and xi = F r
i , yi = F s

i . The identities (1.4)
give us the inequality (4.39). We proceed analogously for the case r s < 0.

For Fibonacci numbers and Lucas number holds the following Karamata
inequality.
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Corollary 4.6. Let n ∈ N.
If r and s ∈ R such that r s > 0 then holds

K−2 ≤

n∑
i=1

F 2+r
i ·

n∑
i=1

F 2
i L

s
i

FnFn+1

n∑
i=1

F 2+r
i Ls

i

≤ K2,(4.40)

K =
1 +

√
F r
nL

s
n√

Ls
n +

√
F r
n

≥ 1(4.41)

If r and s ∈ R such that r s < 0 then holds

K−2 ≤

n∑
i=1

F 2+r
i ·

n∑
i=1

F 2
i L

s
i

FnFn+1

n∑
i=1

F 2+r
i Ls

i

≤ K2,(4.42)

K =

√
Ls
n +

√
F r
n

1 +
√

F r
nL

s
n

≥ 1(4.43)

Proof. We apply (4.35) for functions f(x) = xr and g(x) = xs such that
r s > with substitutions pi = F 2

i and xi = F r
i , yi = Ls

i . The identities (1.4)
give us the inequality (4.43).

5. Extension of Grüss inequality for Fibonacci numbers and
Lucas number

For Fibonacci numbers the following interpolation result holds.

Theorem 5.1. Let n ∈ N, and Tn(a,b;p) defined by (1.3). If func-
tions f and g are monotonic in the same direction then for n-tuples a =
(f(F1), f(F2), · · · , f(Fn)) and b = (g(F1), g(F2), · · · , g(Fn)) holds

(5.44) Tn(a,b; p) ≥ Tn−1(a,b; p) ≥ · · · ≥ T2(a,a; p) ≥ 0.

Proof. We use the refinement of the Chebyshev inequality (see [6] p.
275) for Tn with positiv pij = pipj .

Theorem 5.2. Let n ∈ N, and Tn(a,b;p) defined by (1.3).
(i) If functions f and g are monotonic in the same direction then for

n-tuples
a = (f(F1), f(F2), · · · , f(Fn)) and b = (g(F1), g(F2), · · · , g(Fn)) such

that
f(Fk+1)− f(Fk) ≥ m and g(Fk+1)− g(Fk) ≥ r, k = 1, · · · , n− 1 holds

(5.45) Tn(a,b;p) ≥ mrTn(e, e;p) ≥ 0,

where e = (0, 1, 2, · · · , n− 1).
(ii) If functions f and g are monotonic in the oposite direction then
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(5.46) Tn(a,b;p) ≤ mrTn(e, e;p) ≤ 0,

where e = (n− 1, n, · · · , 1, 0).

Proof. We use the refinement of the Chebyshev inequality (see [7] p.
207) for Tn with positive pi for Fibonacci numbers.

Theorem 5.3. Let n ∈ N, and p = (p1, p2,..., pn) be a positive n-tuple

with Pn =
n∑

i=1

pi. Let f and g be real valued functions such that it holds

(5.47) 0 < m1 < M1, 0 < m2 < M2,m1 ≤ f(Fi) ≤ M1, m2 ≤ g(Fi) ≤ M2.

Then holds
(5.48)

∣∣
n∑

i=1

pif(Fi)g(Fi)

Pn
−

n∑
j=1

pjf(Fj)

Pn

n∑
i=1

pig(Fi)

Pn

∣∣ ≤ 1

4
(M1−m1)(M2−m2) max

J⊂In
P (J) (1−P (J)),

where In = {1, 2, · · · , n} and P (J) = 1
Pn

∑
k∈J

pk for J ⊂ In.

Proof. We use the extension of the Grüss inequality (see Corollary 2.6
in [5] and [3] ) for D(x,y;p) = 1

P 2
n
Tn(x,y;p) with positive pi.

Theorem 5.4. Let n ∈ N, and p = (p1, p2, . . . , pn) be a positive n-tuple

with Pn =
n∑

i=1

pi. Let f and g be real valued functions such that f is mono-

tonically decreasing (or increassing) and it holds

(5.49) 0 < m1 < M1, 0 < m2 < M2,m1 ≤ f(Fi) ≤ M1, m2 ≤ g(Fi) ≤ M2.

Then holds
(5.50)

∣∣
n∑

i=1

pif(Fi)g(Fi)

Pn
−

n∑
j=1

pjf(Fj)

Pn

n∑
i=1

pig(Fi)

Pn

∣∣ ≤ 1

P 2
n

(M1−m1)(M2−m2) max
1≤k≤n−1

Pk (Pn−Pk).

Proof. We use the extension of the Grüss inequality (see Corollary 2.7
in [5] and [3] ) for D(x,y;p) = 1

P 2
n
Tn(x,y;p) with positive pi.

Corollary 5.5. Let n ∈ N, n > 2.
If r and s ∈ R such that r s > 0 then holds∣∣ 1

FnFn+1

n∑
i=1

F 2+r+s
i − 1

(FnFn+1)2

n∑
j=1

F 2+r
j

n∑
i=1

F 2+s
i

∣∣ ≤ 1

F 2
nF

2
n+1

(F r
n−1)(F s

n−1) max
1≤k≤n−1

FkFk+1 (FnFn+1−FkFk+1).
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If r and s ∈ R such that r s < 0 then holds∣∣ 1

FnFn+1

n∑
i=1

F 2+r+s
i − 1

(FnFn+1)2

n∑
j=1

F 2+r
j

n∑
i=1

F 2+s
i

∣∣ ≤ 1

F 2
nF

2
n+1

(F r
n−1)(1−F s

n) max
1≤k≤n−1

FkFk+1 (FnFn+1−FkFk+1).

Remark 5.6. As special cases of Theorem 4.1, Theorem 4.4, Theorem 5.1,
Theorem 5.2, Theorem 5.3 and Theorem 5.4 we can establishe new inequalities
if we select for weights p = (p1, p2,..., pn) the following substitutions and

coredponding Pn =
n∑
i

pi according identities (1.4) – (1.10) respectively:

pi = F 2
i , pi = Fi, pi = F2i−1, pi = F2i, pi = i Fi, pi = F4i−2, pi =

(
n

i

)
F2i.

Acknowledgement: The authors would like to thank A. Dujella for draw-
ing attention to papers [2], [3], [8], that motivated our investigations.

Acknowledgements.
The authors would like to thank A. Dujella for drawing attention to papers

[2], [3], [8], that motivated our investigations.

References

[1] H. Alzer and M.K. Kwong, Extension of an inequality for Fibonacci numbers, Inte-
gers 22 (2022), Paper No. A85, 8 pp.

[2] H. Alzer and F. Luca, An inequality for Fibonacci numbers, Math. Bohem. 147 (2022),

587–590.
[3] D. Andrica and C. Badea, Grüss inequality for positive linear functional, Periodica

Mathematica Hungarica, 19 (2) (1988), 155-167.
[4] R.P. Grimaldi, Fibonacci and Catalan Numbers, John Wiley & Sons, Inc. , Hoboken,

NJ, 2012.
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[7] J.E. Pečarić, F. Prochan and Y.L. Tong, Convex functions, partial ordering statistical

applications, Mathematics in science and engineering, 187 Academic Press, 1992.

[8] P.G. Popescu and J.L. Diaz-Barrero,Certain inequalities for convex functions, J. In-
equal. Pure Appl. Math. 7(2) (2006), Article 41.

Bilješka o Čebǐsevljevoj nejednakosti i povezanim nejednakostima
za Fibonaccijeve brojeve

Vera Čuljak, Josip Pečarić

Sažetak. U radu su dokazani novi rezultati za Fibonacci-

jeve brojeve koji se odnose na Čebǐsevljevu nejednakost i s njom

povezane nejednakosti.
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