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EXPRESSING THREE CONSECUTIVE INTEGERS
AS SUMS OF THREE CUBES

Ajai Choudhry

Abstract. This paper is concerned with the problem of expressing

three consecutive integers as sums of three cubes. We give several para-
metric solutions of the problem. We also give some examples of five and

seven consecutive integers that can all be expressed as sums of three cubes.
We conclude the paper with an open problem regarding four or more con-

secutive integers expressible as sums of three cubes.

1. Introduction

Ever since Mordell’s observation [9, p. 505] that he did “not know any-
thing about the integer solutions of X3 + Y 3 + Z3 = 3 beyond the existence
of the four sets (1, 1, 1), (4, 4,−5) etc.; and it must be very difficult indeed
to find out anything about any other solutions”, there has been considerable
interest in the representation of integers as a sum of three cubes of integers.

Remarkable progress has been made in recent years and the following
new representation of the integer 3 as a sum of three cubes was discovered by
Booker and Sutherland [2] in 2020:

(1.1) 5699368212219623807203 + (−569936821113563493509)3

+ (−472715493453327032)3 = 3.

Except for integers not expressible as a sum of three cubes because of con-
gruence considerations, representations of all other integers ≤ 100 are now
known with the representations for 74, 33 and 42 having been obtained only
in the last eight years (see [6], [1] and [2]).
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This paper is concerned with the representation of three consecutive in-
tegers as sums of three cubes, that is, we need to find integers n such that
there is a solution of the three simultaneous equations,

n = x3
1 + x3

2 + x3
3,(1.2)

n + 1 = y31 + y32 + y33 ,(1.3)

n + 2 = z31 + z32 + z33 ,(1.4)

in which xi, yi, zi, i = 1, 2, 3, are all integers.
On eliminating n between Eqs. (1.2) and (1.3), and again between Eqs.

(1.3) and (1.4), we get the following two equations, respectively:

y31 + y32 + y33 − x3
1 − x3

2 − x3
3 = 1,(1.5)

z31 + z32 + z33 − y31 − y32 − y33 = 1.(1.6)

A solution of Eq. (1.5) will be considered trivial if two of the six integers
y1, y2, y3,−x1,−x2,−x3, are 0 and 1, and the remaining four integers consist
of two pairs such that the sum of the two integers in each pair is 0. If the six
integers z1, z2, z3,−y1,−y2,−y3, satisfy similar conditions, we get a solution
of Eq. (1.6) that will be considered trivial.

A solution of the simultaneous Eqs. (1.2), (1.3) and (1.4) will be consid-
ered trivial if both Eqs. (1.5) and (1.6) are trivially satisfied. If only one of
the two equations (1.5) and (1.6) is trivially satisfied, the solution will be con-
sidered semi-trivial, and if neither of the two Eqs. (1.5) and (1.6) is trivially
satisfied, the solution will be considered a nontrivial solution.

Examples of trivial solutions of the simultaneous Eqs. (1.2), (1.3) and
(1.4) are given by

n = a3 + 03 + 03, n + 1 = a3 + 13 + 03, n + 2 = a3 + 13 + 13,

and

n = a3 + b3 + (−1)3, n + 1 = a3 + b3 + 03, n + 2 = a3 + b3 + 13,

where a and b are arbitrary integers.
In the next section we obtain semi-trivial solutions of our problem while in

Section 3 we obtain several nontrivial parametric solutions of the simultaneous
Eqs. (1.2), (1.3) and (1.4). We conclude the paper with some remarks about
more than three consecutive integers that are expressible as sums of three
cubes and a related open problem.

2. Semi-trivial examples of three consecutive integers
expressible as sums of three cubes

To obtain semi-trivial solutions of Eqs. (1.2), (1.3) and (1.4), we start
with trivial solutions of Eq. (1.5) and then obtain nontrivial solutions of the
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resulting equation obtained from Eq. (1.6). If we start with trivial solutions
of Eq. (1.6) and then solve Eq. (1.5), we get similar results.

As is readily seen, trivial solutions of Eq. (1.5) may be written, without
loss of generality, in one of the following six ways:

(x1, x2, x3, y1, y2, y3) = (0, u, v, 1, u, v),(2.1)

(x1, x2, x3, y1, y2, y3) = (0, u,−u, 1, v,−v),(2.2)

(x1, x2, x3, y1, y2, y3) = (0,−1, u, u, v,−v),(2.3)

(x1, x2, x3, y1, y2, y3) = (−1, u, v, 0, u, v),(2.4)

(x1, x2, x3, y1, y2, y3) = (−1, u,−u, 0, v,−v),(2.5)

(x1, x2, x3, y1, y2, y3) = (u, v,−v, 0, 1, u),(2.6)

where u and v are arbitrary integer parameters.
On substituting the values of xi, yi given by the six trivial solutions (2.1)–

(2.6), in succession, in Eq. (1.6), we get the following six equations, respec-
tively:

−u3 − v3 + z31 + z32 + z33 = 2,(2.7)

z31 + z32 + z33 = 2,(2.8)

−u3 + z31 + z32 + z33 = 1,(2.9)

−u3 − v3 + z31 + z32 + z33 = 1,(2.10)

z31 + z32 + z33 = 1,(2.11)

−u3 + z31 + z32 + z33 = 2.(2.12)

Nontrivial identities expressing the integers 1 and 2 as a sum of three
cubes of polynomials have been given by Mahler [7] and by Werebrusow (as
stated by Mordell [8]), respectively. Further, Choudhry [3] has given identities
expressing the integers 1 and 2 as a sum of four cubes of polynomials and
has also described a method of obtaining identities expressing any arbitrary
integer as a sum of five cubes of polynomials, and thus the integers 1 and 2
can also be expressed in this manner.

Using the identities expressing 1 or 2 as a sum of cubes of three, four or
five polynomials, we immediately get nontrivial parametric solutions of the
six equations (2.7)–(2.12). We can thus obtain several parametric solutions
of the simultaneous diophantine Eqs. (1.5) and (1.6) in which Eq. (1.5) is
trivially satisfied, and we thus obtain semi-trivial parametric solutions of the
three simultaneous Eqs. (1.2), (1.3) and (1.4).

As an example, using the identity

(2.13) (t2)3 + (t2)3 + (−t2 + t + 1)3 + (−t2 − t + 1)3 = 2,

given by Choudhry [3, p. 4], we get the following solution of (2.12):

(2.14) u = t2 + t− 1, z1 = t2, z2 = t2, z3 = −t2 + t + 1.
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The solution (2.14) yields the following solution of the simultaneous Eqs.
(1.5) and (1.6):

x1 = t2 + t− 1, x2 = v, x3 = −v, y1 = 0, y2 = 1,

y3 = t2 + t− 1, z1 = t2, z2 = t2, z3 = −t2 + t + 1,

where t and v are arbitrary integer parameters, and hence we obtain the
integer n = (t2 + t− 1)3 such that the three consecutive integers n, n+ 1, and
n + 2 are expressible as x3

1 + x3
2 + x3

3, y
3
1 + y32 + y33 , z

3
1 + z32 + z33 , respectively.

Taking (t, v) = (2, 1), yields the numerical example,

125 = 53 + 13 + (−1)3, 126 = 03 + 13 + 53, 127 = 43 + 43 + (−1)3.

3. Nontrivial examples of three consecutive integers
expressible as sums of three cubes

We will describe, in the next two subsections, two different methods of
obtaining nontrivial solutions of the simultaneous diophantine Eqs. (1.2),
(1.3) and (1.4), or the equivalent pair of simultaneous Eqs. (1.5) and (1.6).
The first method generates several multi-parameter solutions in polynomials
of high degree and some of these solutions yield numerical solutions in positive
integers. The second method generates several solutions in terms of linear
and quadratic polynomials but all such solutions that we could obtain yield
numerical examples that necessarily include negative integers.

3.1. First method. We will first solve the simultaneous Eqs. (1.5) and (1.6)
by rewriting Eq.(1.5) as

(3.1) y31 + y32 + y33 − x3
3 = x3

1 + x3
2 + 1.

and solving Eq.(3.1) together with the following equation obtained by elimi-
nating y1, y2, y3, from Eqs. (1.5) and (1.6):

(3.2) z31 + z32 + z33 − x3
1 − x3

2 − x3
3 = 2.

We now impose the auxiliary condition z3 = x3 when Eq. (3.2) reduces
to

(3.3) z31 + z32 − x3
1 − x3

2 = 2.

While the auxiliary condition z3 = x3 facilitates the solution of our problem,
it also ensures that the solution obtained by this method will never consist of
distinct integers.

Now we have to solve the simultaneous Eqs. (3.1) and (3.3). Our strategy
to solve these simultaneous equations is to reduce them, in two steps, to a
single equation in which one of the unknown variables occurs only in degree 1
so that the equation can be solved. The first step is to use a known solution
of Eq. (3.3), and substitute the values of x1, x2 given by this solution in the
right-hand side of Eq. (3.1). For the second step, we will assign values to the
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four variables x3, y1, y2 and y3 (which occur only on the left-hand side of Eq.
(3.1)) in terms of certain new variables in such a way that at least one of the
new variables occurs only in the first degree on simplifying the left-hand side
of Eq. (3.1).

For executing the first step, we give below two known solutions of Eq.
(3.3). One such solution, that immediately follows from the identity (2.13),
may be written, in terms of an arbitrary parameter t, as follows:

(3.4) x1 = −t2, x2 = t2 − t− 1, z1 = t2, z2 = −t2 − t + 1.

A second solution of Eq. (3.3) is as follows:

(3.5)
x1 = 6gt2(g3 + h3), x2 = 6t3(g3 + h3)2 − 1,

z1 = 6t3(g3 + h3)2 + 1, z2 = −6ht2(g3 + h3),

where g, h and t are arbitrary parameters. The solution (3.5) follows from an
identity, given by Choudhry [3, p. 4], expressing 2 as a sum of four cubes of
polynomials in three variables. It may also be verified by direct computation.

We now describe two ways of executing the second step of our strategy.
The first way is by writing

(3.6) x3 = m+p− q, y1 = m+p+ q, y2 = −m+p− q, y3 = m−p− q,

where m, p and q are arbitrary parameters, and now the left-hand side of Eq.
(3.1) reduces to 24mpq.

The second way is to write

(3.7) x3 = um + p, y1 = v1m + p, y2 = v2m + q, y3 = v3m− q,

where u and vi, i = 1, 2, 3, are chosen so as to satisfy the condition,

(3.8) u3 = v31 + v32 + v33 ,

while m, p and q are arbitrary parameters. Now the left-hand side of Eq. (3.1)
reduces to

3((v21 − u2)p + (v22 − v23)q)m2 − 3((u− v1)p2 − (v2 + v3)q2)m,

and, on choosing

(3.9) p = k(v22 − v23), q = k(u2 − v21),

where k is a suitably chosen rational number such that p, q are integers, it
further reduces to

3k2m(u− v1)(v2 + v3)(u3 + u2v1 − uv21 − v31 − v32 + v22v3 + v2v
2
3 − v33),

where m occurs only in degree 1 as we desired.
We can use either of the two solutions of Eq. (3.3) with either of the two

ways given above of reducing the left-hand side of Eq. (3.1) to a linear poly-
nomial in the independent parameter m and thus obtain several parametric
solutions of the simultaneous diophantine Eqs. (1.5) and (1.6).
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As an example, taking the values of x1, x2 given by the solution (3.4) of
Eq. (3.3), and the values of x3, y1, y2, y3, given by (3.6), Eq. (3.1) reduces to

(3.10) 24mpq = −t(3t4 − 5t2 + 3),

and we can readily find several parametric solutions by a suitable choice of t.
For instance, we may solve Eq. (3.10) for m, and we get m = −t(3t4 − 5t2 +
3)/(24pq). Since we want a solution in integers, we now write

(3.11) t = −24pqr,

where r is an arbitrary integer parameter, and we thus obtain

(3.12) m = 3r(331776p4q4r4 − 960p2q2r2 + 1).

On substituting the values of t and m given by (3.11) and (3.12), respectively,
in the relations (3.4) and (3.6), and noting that we have already imposed the
condition z3 = x3, we get the following nontrivial solution of the simultaneous
Eqs. (1.5) and (1.6):

(3.13)

x1 = −576p2q2r2,

x2 = 576p2q2r2 + 24pqr − 1,

x3 = 995328p4q4r5 − 2880p2q2r3 + p− q + 3r,

y1 = 995328p4q4r5 − 2880p2q2r3 + p + q + 3r,

y2 = −995328p4q4r5 + 2880p2q2r3 + p− q − 3r,

y3 = 995328p4q4r5 − 2880p2q2r3 − p− q + 3r,

z1 = 576p2q2r2,

z2 = −576p2q2r2 + 24pqr + 1,

z3 = x3,

where p, q and r are arbitrary integer parameters.
We can obtain another solution of the simultaneous Eqs. (1.5) and (1.6)

by following a similar procedure using the values of x1, x2 given by the second
solution (3.5) of Eq. (3.3). As it is cumbersome to write this solution, we do
not give it explicitly.

We will now obtain solutions of the simultaneous Eqs. (1.5) and (1.6) by
following the second way mentioned above using the values of x3, y1, y2, y3,
given by (3.7). We can use the values of x1, x2 given by either of the two
solutions (3.4) and (3.5) of Eq. (3.3), but we restrict ourselves only to the
second solution (3.5) of Eq. (3.3).

We need values of u, v1, v2, v3, satisfying the condition (3.8). Several
parametric solutions of Eq. (3.8) are already known ([4, p. 257–260], [5, p.
290–291], and starting with such solutions of Eq. (3.8), we can obtain multi-
parameter solutions of the simultaneous Eqs. (1.5) and (1.6).
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As the more general multi-parameter solutions obtained by this method
are too cumbersome to write, we give a simpler example taking (u, v1, v2, v3)
= (9, 6, 1, 8) when the condition (3.8) is satisfied. We use the relations (3.7)
and following the procedure already described, we get, on using the relations
(3.9), (p, q) = (−63k, 45k) and on taking k = −1/9, we get take (p, q) =
(7,−5). We now take t = 13r in the solution (3.5), when Eq. (3.1) simply
reduces to

(3.14) m = 169r3(g + h)2(g2 − gh + h2)2(57921708g12r6

+ 231686832g9h3r6 + 347530248g6h6r6 + 231686832g3h9r6

+ 57921708h12r6 + 13182g6r3 − 13182h6r3 + 1).

Thus a solution of the simultaneous Eqs. (1.5) and (1.6) is given by (3.7)
where (u, v1, v2, v3, p, q) = (9, 6, 1, 8, 7,−5) and m is given by (3.14) in terms
of three arbitrary integer parameters g, h and r. As a special case we take
(g, h) = (2,−1), when we get the following solution of the simultaneous Eqs.
(1.5) and (1.6):

(3.15)

x1 = 14196r2,

x2 = 645918r3 − 1,

x3 = 10364749588252332r9 + 61893800514r6 + 74529r3 + 7,

y1 = 6909833058834888r9 + 41262533676r6 + 49686r3 + 7,

y2 = 1151638843139148r9 + 6877088946r6 + 8281r3 − 5,

y3 = 9213110745113184r9 + 55016711568r6 + 66248r3 + 5,

z1 = 645918r3 + 1,

z2 = 7098r2,

z3 = x3,

where r is an arbitrary integer parameter.
We now have two parametric solutions (3.13) and (3.15) of the simultane-

ous diophantine Eqs. (1.5) and (1.6). With the values of xi, yi, zi, i = 1, 2, 3,
given by (3.13) and by (3.15), we may take n = x3

1 + x3
2 + x3

3, and obtain two
nontrivial examples of three consecutive integers n, n + 1, n + 2 that may be
expressed as x3

1 + x3
2 + x3

3, y31 + y32 + y33 , and z31 + z32 + z33 , respectively.
As a numerical example, taking (p, q, r) = (2, 1, 1) in the solution (3.13),

we get n = 4030102758035382018255, and the three consecutive integers be-
ginning with n may be written as sums of three cubes as follows:

n = (−2304)3 + 23513 + 159137323,

n + 1 = 159137343 + (−15913730)3 + 159137283,

n + 2 = 23043 + (−2255)3 + 159137323.
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The second solution (3.15) yields, on taking r ≥ 1, infinitely many non-
trivial solutions of our problem in positive integers. For instance, taking r = 1
in the solution (3.15), we get

n = 1113484618981001668543451628004732068607126098717,

and the representations of the three consecutive integers as sums of three
cubes of positive integers are as follows:

n = 141963 + 6459173 + 103648114821273823,

n + 1 = 69098743214182573 + 11516457202363703

+ 92131657618910053,

n + 2 = 70983 + 6459193 + 103648114821273823.

3.2. Second method. We will now obtain nontrivial solutions of the simul-
taneous Eqs. (1.5) and (1.6) by first obtaining parametric solutions of the
corresponding simultaneous homogeneous equations namely,

y31 + y32 + y33 − x3
1 − x3

2 − x3
3 = t3,(3.16)

z31 + z32 + z33 − y31 − y32 − y33 = t3,(3.17)

and then choosing the parameters such that we get t = 1.
On writing

(3.18)

x1 = a1u + b1v, x2 = −a1u− b4v, x3 = −a4u− b1v,

y1 = a2u + b2v, y2 = −a2u, y3 = −b2v,
z1 = a3u + b3v, z2 = −a3u + b4v, z3 = a4u− b3v,

t = a4u + b4v,

where u, v, ai, bi, i = 1, . . . , 4, are all arbitrary parameters, Eqs. (3.16) and
(3.17) reduce, after transposing all terms to one side and removing the factor
3uv in both cases, to the following two equations, respectively:

(3.19) ((a21−a24)b1−a22b2−(a21−a24)b4)u+((a1−a4)b21−a2b22−(a1−a4)b24)v = 0,

and

(3.20) (a22b2−(a23−a24)b3−(a23−a24)b4)u+(a2b
2
2−(a3+a4)b23+(a3+a4)b24)v = 0.

We now equate to 0 the coefficients of u and v in Eq. (3.19) and the
coefficient of u in Eq. (3.20) and solve for bi, i = 1, . . . , 4 excluding solutions
in which b2 = 0 since that would make y3 = 0. We thus get the following
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solution for bi, i = 1, . . . , 4:

(3.21)

b1 = k(a23 − a24)(a31 + a21a4 − a1a
2
4 + a32 − a34),

b2 = 2ka2(a21 − a24)(a23 − a24),

b3 = −k((a23 − a24)a31 − (2a32 − a23a4 + a34)a21 − a24(a23 − a24)a1

− a32a
2
3 + 3a32a

2
4 − a23a

3
4 + a54),

b4 = k(a23 − a24)(a31 + a21a4 − a1a
2
4 − a32 − a34),

where k is an arbitrary parameter.
With the values of bi, i = 1, . . . , 4, given by (3.21), Eq. (3.19) is identically

satisfied for all u and v while Eq. (3.20) reduces to the following equation:

(3.22) (a23 − a24)a31 − (a32 − a33 + a3a
2
4)a21 − (a23 − a24)a24a1

− (a23 − 2a24)a32 − a33a
2
4 + a3a

4
4 = 0.

Eq. (3.22) has a parametric solution given by

(3.23) a1 = −p2−pq+q2, a2 = 2pq, a3 = p2−pq−q2, a4 = p2+pq+q2,

where p and q are arbitrary parameters. It is also possible to find infinitely
many integer solutions of Eq. (3.22) that are not given by the parametric
solution (3.23). While these solutions of Eq. (3.22) will yield solutions of
the simultaneous diophantine Eqs. (3.16) and (3.17) in terms of two linear
parameters u and v, in order to obtain solutions of the simultaneous diophan-
tine Eqs. (1.5) and (1.6), we need to find such solutions in which we can find
u, v so as to satisfy the condition t = a4u + b4v = 1. For this purpose, it
suffices to find integer solutions of Eq. (3.22) such that the resulting value of
b4, obtained from (3.21), is coprime with a4.

The parametric solution (3.23) of Eq. (3.22) does not lead to coprime
values of a4 and b4. Accordingly, we performed trials over the range |a1| +
|a2| + |a3| + |a4| ≤ 100, and found several solutions of Eq. (3.22) such that
gcd(a4, b4) = 1. However, only two of these solutions yielded independent
solutions of the simultaneous diophantine Eqs. (1.5) and (1.6).

One of the aforementioned two solutions of Eq. (3.22) namely, (a1, a2,
a3, a4) = (5, 2,−2, 1), yields on using the relations (3.21) and taking k = 1/24,
(b1, b2, b3, b4) = (19, 12, −1, 17), and now, on using the relations (3.18), we
get the following solution of the simultaneous diophantine Eqs. (3.16) and
(3.17):

(3.24)

x1 = 5u + 19v, x2 = −5u− 17v, x3 = −u− 19v,

y1 = 2u + 12v, y2 = −2u, y3 = −12v,

z1 = −2u− v, z2 = 2u + 17v, z3 = u + v,

t = u + 17v,
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where u and v are arbitrary parameters. Now, on writing u = 1− 17v, we get
t = 1, and hence we get the following solution of the simultaneous diophantine
Eqs. (1.5) and (1.6):

(3.25)

x1 = −66v + 5, x2 = 68v − 5, x3 = −2v − 1,

y1 = −22v + 2, y2 = 34v − 2, y3 = −12v,

z1 = 33v − 2, z2 = −17v + 2, z3 = −16v + 1,

where v is an arbitrary integer parameter.
With the values of xi, yi, zi, i = 1, 2, 3, given by (3.25), we get

n = x3
1 + x3

2 + x3
3 = 26928v3 − 4032v2 + 144v − 1,

and the three consecutive integers n, n + 1, n + 2 may be expressed as x3
1 +

x3
2 + x3

3, y31 + y32 + y33 , and z31 + z32 + z33 , respectively.
On taking v = 2 in the solution (3.25), we get the following numerical

example of three consecutive integers expresible as sums of three cubes:

199583 = 1313 + (−5)3 + (−127)3,

199584 = 663 + (−24)3 + (−42)3,

199585 = 643 + (−31)3 + (−32)3.

A second solution of Eq. (3.22) namely, (a1, a2, a3, a4) = (−4, 6, 19, 1),
yields, on following a similar procedure as above, the following solution of the
simultaneous diophantine Eqs. (1.5) and (1.6):

(3.26)

x1 = −97v − 4, x2 = 145v + 4, x3 = −48v − 1,

y1 = 194v + 6, y2 = −174v − 6, y3 = −20v,

z1 = 582v + 19, z2 = −580v − 19, z3 = −2v + 1,

where, as before, v is an arbitrary integer parameter. This gives

n = x3
1 + x3

2 + x3
3 = 2025360v3 + 132480v2 + 2160v − 1,

and, as before, the three consecutive integers n, n+ 1, n+ 2 may be expressed
as x3

1 + x3
2 + x3

3, y31 + y32 + y33 , and z31 + z32 + z33 , respectively.
While the two linear parametric solutions (3.25) and (3.26) of the simul-

taneous diophantine Eqs. (1.5) and (1.6) give numerical solutions of these
equations in distinct integers, it is easily seen that some of these integers will
necessarily be negative. We, accordingly, explored the existence of parametric
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solutions of degree 2 and obtained one such solution which is as follows:

(3.27)

x1 = −147m2 − 42m− 1, x2 = 294m2 + 77m + 3,

x3 = −147m2 − 35m− 3, y1 = −147m2 − 56m− 4,

y2 = 294m2 + 77m + 4, y3 = −147m2 − 21m,

z1 = −147m2 − 14m + 1, z2 = 294m2 + 77m + 5,

z3 = −147m2 − 63m− 5,

where m is an arbitrary integer parameter.
The procedure for obtaining the solution (3.27) is similar to that used

for obtaining the two linear solutions but we omit the tedious details. The
solution (3.27) may be readily verified by direct computation.

As in the case of earlier solutions, it follows from (1.2) that

n = 19059138m6+14975037m5+4429845m4+617400m3+40572m2+1008m−1,

and, in view of the relations (1.2), (1.3) and (1.4), the three consecutive
integers n, n+1 and n+2 are all expressible as sums of three cubes of integers.

As a numerical example, taking m = 1 in the solution (3.27), we get
n = 39122999, and the three consecutive integers beginning with n may be
written as sums of three cubes as follows:

39122999 = 3743 + (−185)3 + (−190)3,

39123000 = 3753 + (−168)3 + (−207)3,

39123001 = 3763 + (−160)3 + (−215)3.

While the solution (3.27) yields numerical solutions of Eqs. (1.5) and (1.6)
in distinct integers, here also some of the integers are necessarily negative.

4. Four or more consecutive integers expressible as sums of
three cubes and a related open problem

If a is any arbitrary integer, the representations a3, a3+03±13, a3±13±13

furnish a trivial example of five consecutive integers a3 − 2, . . . , a3 + 2, that
can be expressed as a sum of three cubes. Less trivial examples are obtained
from integer solutions of the diophantine Eq. (3.3) and taking n = x3

1 +x3
2−1

when the five integers n, n + 1, . . . , n + 4 are all expressible as sums of three
cubes since we have,

n = x3
1 + x3

2 + (−1)3, n + 1 = x3
1 + x3

2 + 03,

n + 2 = x3
1 + x3

2 + 13, n + 3 = z31 + z32 + 03,

n + 4 = z31 + z32 + 13.

Thus the parametric solutions (3.4) and (3.5) of Eq. (3.3) yield infinitely
many examples of five consecutive integers expressible as sums of three cubes.
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Further, if the integers xi, i = 1, 2, 3, satisfy the relation x3
1 + x3

2− x3
3 = 3

and we take n = x3
3 − 2, then the 7 consecutive integers n + j, j = 0, . . . , 6,

can all be represented as a sum of three cubes since we have

n = x3
3 + (−1)3 + (−1)3, n + 1 = x3

3 + (−1)3 + 03,

n + 2 = x3
3 + 03 + 03, n + 3 = x3

1 + 13 + 03,

n + 4 = x3
1 + 13 + 13, n + 5 = x3

1 + x3
2 + 03,

n + 6 = x3
1 + x3

2 + 13.

Since 43+43−53 = 3, taking n = 53−2 = 123 gives 7 consecutive integers,
commencing with 123, that can all be represented as a sum of three cubes.
Similarly, in view of the identity (1.1), the 7 consecutive integers starting with
4727154934533270323 − 2 can all be expressed as sums of three cubes.

None of the above examples of 5 or 7 consecutive integers is really non-
trivial since the representations of several of the integers as a sum of three
cubes include the cubes of 0, 1 and −1. It is an open problem of considerable
interest to find infinitely many nontrivial examples of four or more consecu-
tive integers that can all be expressed as a sum of three cubes without using
the cubes of the integers 0,−1 and 1.
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