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ENDS OF THE FIRST COMPLEMENTARY SERIES OF
GENERALIZED PRINCIPAL SERIES

Darija Brajković Zorić and Ivan Matić

Abstract. We determine all irreducible non-tempered composition
factors of induced representations appearing at the ends of the first comple-

mentary series of generalized principal series representation of either sym-

plectic, special odd-orthogonal, or unitary group over a non-archimedean
local field.

1. Introduction

The generalized principal series present a well-studied and particularly im-
portant class of induced representations of classical groups over non-archime-
dean local fields. These are representations of the form π o σ, induced from
the representation π ⊗ σ of the maximal parabolic subgroup having an ir-
reducible essentially square-integrable representation π on the general linear
group part and a discrete series σ on the classical group part. Reducibility
points of such representations of symplectic and odd orthogonal groups have
been determined in [16], while the unitary group case has been handled in
[8], but more detailed description of the composition factors is still missing,
except in some particular cases, as in [15].

By the classical result of [19], an irreducible essentially square-integrable
representation of the general linear group is of the form δ([νaρ, νbρ]), and is
attached to the segment [νaρ, νbρ], where ρ is an irreducible cuspidal represen-
tation of the general linear group. We are primarily interested in determining
the irreducible non-tempered composition factors appearing at the ends of the
first complementary series, i.e., we start from the unitary generalized principal
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series δ([ν−aρ, νaρ]) o σ, and describe the non-tempered irreducible subquo-
tients of δ([ν−a+sρ, νa+sρ])oσ, for minimal positive s such that this induced
representation reduces.

It is well-known that all the irreducible representations appearing at the
ends of the complementary series are unitarizable, so we construct a class
of unitarizable irreducible non-tempered representations. Furthermore, the
situation studied should be rather similar to the one studied in [15], providing
short and approachable composition series.

One possible approach to the investigation of the generalized principal
series is via the Mœglin-Tadić classification of discrete series, provided in
[12, 14], and in the odd GSpin case in [4]. This classification now holds
unconditionally, due to [1], [13, Théorème 3.1.1] and [2, Theorem 7.8]. Having
this classification at hand, we provide a uniform approach for symplectic,
special odd-orthogonal and unitary groups. We start from the results of [8], or
[16], and rely on algebraic methods, which are based mainly on the calculation
of the Jacquet modules using the structural formula provided in [17].

Our approach might be regarded as a further development of the methods
of [5], [7] and [15]. The obtained results show that induced representations
appearing at the end of the first complementary series contain at most four
mutually non-isomorphic irreducible non-tempered subquotients, which all
appear in the composition with the multiplicity one. Also, it appears that
most of the irreducible non-tempered subquotients have been constructed in
[8] and [16]. The similar construction has also appeared to be useful for
determining the reducibility points in more general situations ([6], [9], [10]).

We note that all our results and proofs can also be used for the odd
GSpin groups over a non-archimedean local field of characteristic zero without
any change, based on the discrete series classification provided in [4] and the
structural formula given in the odd GSpin case in [3].

Let us now describe the contents of the paper in more detail. In the fol-
lowing section we introduce the notation and present some preliminaries. In
the third section we provide several technical results, and discuss the special
case Jordρ(σ) = ∅. The case of non-empty Jordρ(σ) is studied in the final
two sections. In the fourth section we determine all the non-tempered irre-
ducible subquotients appearing at the end of the first complementary series
δ([ν−a+sρ, νa+sρ]) o σ, when −a+ s ≤ 0, using a case-by-case consideration.
In the final section we describe all the non-tempered irreducible subquotients
when −a+ s > 0.

2. Preliminaries

Through the paper, we denote by F a non-archimedean local field. Let
us fix one of the following series {Gn} of classical groups over F .
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In the odd orthogonal group case, let Y0 denote a fixed anisotropic or-
thogonal vector space over F of odd dimension, and let us consider the Witt
tower based on Y0. For n such that 2n+1 ≥ dimY0, there is exactly one space
Vn in the tower of dimension 2n+ 1. We let Gn denote the special orthogonal
group of this space.

If Vn denotes the symplectic space of dimension 2n in the corresponding
Witt tower, we let Gn stand for the symplectic group of this space. We also
consider the unitary groups U(n, F ′/F ), for a separable quadratic extension
F ′of F . There is also an anisotropic unitary space Y0 over F ′, and the Witt
tower of unitary spaces Vn based on Y0. Let Gn stand for the unitary group
of the space Vn of dimension either 2n+ 1 or 2n.

In the symplectic and odd orthogonal case we set F ′ = F .
Let us fix the set of standard parabolic subgroups such that their Levi

factors are of the form M ∼= GL(n1, F
′) × · · · × GL(nk, F

′) × Gn′ , where
GL(m,F ′) denotes the general linear group of rank m over F ′. If δi is a
representation of GL(ni, F

′) and τ a representation of Gn′ , the normalized

parabolically induced representation IndGn

M (δ1 ⊗ · · · ⊗ δk ⊗ τ) will be denoted
by δ1 × · · · × δk o τ . A similar notation is used to denote a parabolically
induced representation of GL(m,F ′).

Let Irr(Gn) stand for the set of all irreducible admissible representations
of Gn. Let R(Gn) stand for the Grothendieck group of admissible representa-
tions of finite length of Gn and define R(G) = ⊕n≥0R(Gn). In a similar way
we define Irr(GL(n, F ′)) and R(GL) = ⊕n≥0R(GL(n, F ′)).

For an irreducible smooth representation π ∈ R(GL), let π̃ stand for the
contragredient representation of π. If F = F ′, we say that π is F ′/F -selfdual
if π ∼= π̃. If F 6= F ′, we denote by θ the non-trivial F -automorphism of F ′,
let π̂ denote the representation g 7→ π̃(θ(g)), and say that the representation
π is F ′/F -selfdual if π ∼= π̂.

For σ ∈ Irr(Gn) and 1 ≤ k ≤ n, we let r(k)(σ) stand for the normal-
ized Jacquet module of σ with respect to the parabolic subgroup P(k) having
the Levi subgroup equal to GL(k, F ′) × Gn−k. We identify r(k)(σ) with its
semisimplification in R(GL(k, F ′))⊗R(Gn−k) and consider

µ∗(σ) = 1⊗ σ +

n∑
k=1

r(k)(σ) ∈ R(GL)⊗R(G).

We denote by ν a composition of the determinant mapping with the nor-
malized absolute value on F ′. Let ρ ∈ R(GL) denote an irreducible su-
percuspidal representation. By a segment ∆ we mean a set of the form
[ρ, νmρ] := {ρ, νρ, . . . , νmρ}, for a non-negative integer m. The induced
representation νmρ × νm−1 × · · · × ρ has a unique irreducible subrepresen-
tation ([19]), which we denote by δ(∆). Representation δ(∆) is essentially
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square-integrable, and by [19] every irreducible essentially square-integrable
representation in R(GL) can be obtained in this way.

In the following result we state the structural formula which is crucial for
our calculations with the Jacquet modules ([17]).

Lemma 2.1. Let ρ ∈ R(GL) be an irreducible cuspidal F ′/F -selfdual rep-
resentation and k, l ∈ R such that k+ l ∈ Z≥0. Let σ ∈ R(G) be an irreducible
admissible representation. Write µ∗(σ) =

∑
π,σ′ π ⊗ σ′. Then the following

holds:

µ∗(δ([ν−kρ, νlρ]) o σ) =

l∑
i=−k−1

l∑
j=i

∑
τ,σ′

δ([ν−iρ, νkρ])× δ([νj+1ρ, νlρ])× π

⊗ δ([νi+1ρ, νjρ]) o σ′.

We omit δ([νxρ, νyρ]) if x > y.

Let us recall the subrepresentation version of the Langlands classification
for the general linear groups.

Let δ ∈ R(GL) stand for an irreducible essentially square-integrable rep-
resentation. Then there is a unique e(δ) ∈ R such that ν−e(δ)δ is unitarizable,
and e(δ([νaρ, νbρ])) = (a+ b)/2.

Suppose that δ1, δ2, . . . , δk are irreducible essentially square-integrable
representations such that e(δ1) ≤ e(δ2) ≤ . . . ≤ e(δk). Then the induced
representation δ1 × δ2 × · · · × δk has a unique irreducible subrepresentation,
which we denote by L(δ1, δ2, . . . , δk). This irreducible subrepresentation is
called the Langlands subrepresentation, it appears with multiplicity one in
the composition series of δ1 × δ2 × · · · × δk, and every irreducible representa-
tion π ∈ R(GL) is isomorphic to some L(δ1, δ2, . . . , δk), the representations
δ1, δ2, . . . , δk being unique up to a permutation.

We also use the subrepresentation version of the Langlands classification
for classical groups, which enables us to realize a non-tempered irreducible rep-
resentation π of Gn as the unique irreducible subrepresentation of an induced
representation of the form δ1×δ2×· · ·×δkoτ , where τ is an irreducible tem-
pered representation of some Gt, and δ1, δ2, . . . , δk ∈ R(GL) are irreducible
essentially square-integrable representations such that e(δ1) ≤ e(δ2) ≤ · · · ≤
e(δk) < 0. Then we write π = L(δ1, δ2, . . . , δk; τ).

By the Mœglin-Tadić classification of discrete series [12, 14], a discrete
series σ ∈ Gn corresponds to an admissible triple which consists of the Jordan
block, the partial cuspidal support, and the ε-function. Elements appearing
in the Jordan block are of the form (a, ρ), where a is a positive integer of
the appropriate parity and ρ ∈ R(GL) is a F ′/F -selfdual representation. The
ε-function is defined on the subset of Jord∪ Jord× Jord and attains values in
{±1}. More details on those invariants can be found in [14, 16] and in [4],
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where slightly different approach, which also covers the classical group case,
has been used.

For a discrete series σds ∈ R(G), we denote by Jord(σds) the corre-
sponding set of the Jordan blocks, and by εσds

the corresponding ε-function.
For an irreducible F ′/F -selfdual cuspidal representation ρ of GL(n, F ′) let
Jordρ(σds) = {x : (x, ρ) ∈ Jord(σds)}. If Jordρ(σds) 6= ∅ and x ∈ Jordρ(σds),
set x = max{y ∈ Jordρ(σds) : y < x}, if it exists. To define the ε function on
the ordered pairs of the form ((a1, ρ1), (a2, ρ2)) ∈ Jord× Jord, it is enough to
define it on the ordered pairs of the form ((x , ρ), (x, ρ)).

3. Some technical results

In this section we recall and obtain some useful technical results. The
first one follows from [18, Theorem 8.2].

Lemma 3.1. Let σ1 ∈ R(G) denote a discrete series representation, and
let (a, ρ) ∈ Jord(σ1) be such that a is defined and a ≤ a−4. Then for every x
such that a−x

2 is an integer and a +4 ≤ x ≤ a, there exists a discrete series σ2

such that σ1 is a subrepresentation of δ([ν
x−1
2 ρ, ν

a−1
2 ρ])oσ2. Furthermore, if

an irreducible constituent of the form δ([ν
x−1
2 ρ, ν

a−1
2 ρ])⊗π appears in µ∗(σ1),

then π ∼= σ2 and δ([ν
x−1
2 ρ, ν

a−1
2 ρ]) ⊗ σ2 appears in µ∗(σ1) with multiplicity

one.

Lemma 3.2. Let σ ∈ R(G) denote a discrete series representation and let
ρ ∈ R(GL) denote an irreducible cuspidal F ′/F -selfdual representation. Let
a ∈ 1

2Z, a > 0, such that 2a− 1 ∈ Jordρ(σ). Suppose that for a non-negative
integer k we have 2a+ 2i+ 1 /∈ Jordρ(σ) for i = 0, 1, . . . , k. Then the induced
representation δ([νaρ, νa+kρ])oσ contains a discrete series subrepresentation,
which we denote by σds, and in R(G) we have

δ([νaρ, νa+kρ]) o σ = L(δ([ν−a−kρ, ν−aρ]);σ) + σds.

Proof. Discrete series σds is constructed in [18, Theorem 8.2].
Let us now describe the non-tempered irreducible subquotients of δ([νaρ,

νa+kρ]) o σ. Every such irreducible subquotient is of the form

L(δ([νx1ρ1, ν
y1ρ1]), . . . , δ([νxmρm, ν

ymρm]); τ),

where xi+yi < 0 for i = 1, . . . ,m, and xi+yi ≤ xi+1+yi+1 for i = 1, . . . ,m−1.
Since L(δ([νx1ρ1, ν

y1ρ1]), . . . , δ([νxmρm, ν
ymρk]); τ) is a subrepresentation of

δ([νx1ρ1, ν
y1ρ1])× L(δ([νx2ρ2, ν

y2ρ2]), . . . , δ([νxmρm, ν
ymρm]); τ),

it follows that µ∗(δ([νaρ, νa+kρ]) o σ) contains

δ([νx1ρ1, ν
y1ρ1])⊗ L(δ([νx2ρ2, ν

y2ρ2]), . . . , δ([νxmρm, ν
ymρm]); τ).
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By Lemma 2.1, there are i, j, a − 1 ≤ i ≤ j ≤ a + k and an irreducible
constituent π1 ⊗ π2 of µ∗(σ) such that

δ([νx1ρ1, ν
y1ρ1]) ≤ δ([ν−iρ, ν−aρ])× δ([νj+1ρ, νa+kρ])× π1

and

L(δ([νx2ρ2, ν
y2ρ2]), . . . , δ([νxmρm, ν

ymρm]); τ) ≤ δ([νi+1ρ, νjρ]) o π2.

Since x1 + y1 < 0, the square-integrability of σ implies ρ1
∼= ρ, i ≥ a, and

j = a + k. Thus, π1 is of the form δ([νx1ρ, ν−i−1ρ]) × δ([ν−a+1ρ, νy1ρ]).
Since σ is a discrete series, it follows that x1 = −i. If y1 6= −a, µ∗(σ)
contains an irreducible constituent of the form δ([ν−a+1ρ, νy1ρ]) ⊗ π2 where
−i + y1 = x1 + y1 < 0. Square-integrability of σ gives y1 ≥ a, and i ≤ a + k
implies y1 < a+k. Since µ∗(σ) contains an irreducible constituent of the form
νy1ρ⊗ π, this contradicts the definition of Jordρ(σ). Thus, y1 = −a and

L(δ([νx2ρ2, ν
y2ρ2]), . . . , δ([νxmρm, ν

ymρm]); τ) ≤ δ([νi+1ρ, νa+kρ]) o σ.

Suppose that i 6= a+k. Using the cuspidal support considerations we directly
obtain m ≥ 2. Also, µ∗(δ([νi+1ρ, νa+kρ]) o σ) contains δ([νx2ρ2, ν

y2ρ2]) ⊗
L(δ([νx3ρ3, ν

y3ρ3]), . . . , δ([νxmρm, ν
ymρm]); τ). Repeating the same reasoning

as before, we conclude y2 = −i−1, which contradicts x1 +y1 ≤ x2 +y2. Thus,
i = a+ k, m = 1 and τ ∼= σ. In other words, every non-tempered irreducible
subquotient of δ([νaρ, νa+kρ]) o σ is isomorphic to L(δ([ν−a−kρ, ν−aρ]);σ),
and it is an integral part of the Langlands classification that it appears in the
composition series of δ([νaρ, νa+kρ]) o σ with multiplicity one.

Using the cuspidal support considerations, we deduce that every irre-
ducible tempered subquotient of δ([νaρ, νa+kρ])oσ is a discrete series, whose
set of the Jordan blocks equals Jord(σds). By Lemma 3.1, the Jacquet mod-
ule of such a discrete series with respect to the appropriate parabolic sub-
group contains an irreducible constituent of the form δ([νaρ, νa+kρ]) ⊗ π. It
follows from the structural formula that the only irreducible constituent of
µ∗(δ([νaρ, νa+kρ]) o σ) of such a form is δ([νaρ, νa+kρ]) ⊗ σ and it appears
there with multiplicity one. Thus, δ([νaρ, νa+kρ]) o σ contains a unique dis-
crete series representation and the lemma is proved.

Through the rest of the paper we fix an irreducible cuspidal unitarizable
representation ρ ∈ R(GL) and a discrete series σ ∈ R(G). It is well-known,
and also follows from [16, 8] that δ([νxρ, νyρ]) o σ is irreducible if ρ is not
F ′/F -selfdual, so we can also assume that ρ is F ′/F -selfdual. We denote
by (Jord(σ), εσ, σcusp) the admissible triple corresponding to σ. Also, let us
denote by α a unique non-negative real number such that ναρoσcusp reduces.
It follows from [1] and [13, Théorème 3.1.1] that α ∈ 1

2Z.
In this section we also comment the simple case when Jordρ(σ) = ∅. Note

that this implies α ∈ {0, 1
2}. Let a ∈ 1

2Z, a ≥ 0. It is well-known that the
induced representation δ([ν−aρ, νaρ]) o σ is irreducible if and only if a− α is
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not an integer. Furthermore, if a− α is an integer then δ([ν−aρ, νaρ]) o σ is
a direct sum of two mutually non-isomorphic tempered representations.

Suppose that δ([ν−aρ, νaρ])oσ is irreducible. Then δ([ν−a+ 1
2 ρ, νa+ 1

2 ρ])o
σ reduces and presents the end of the first complementary series. In the same
way as in the proof of Lemma 3.2, we can conclude that

L(δ([ν−a−
1
2 ρ, νa−

1
2 ρ]);σ)

is a unique irreducible non-tempered subquotient of δ([ν−a+ 1
2 ρ, νa+ 1

2 ρ]) o σ,
and it appears with multiplicity one.

4. Ends of the first complementary series in the non-positive
case

In this section we start with a description of the non-tempered irreducible
representations appearing at the ends of the first complementary series. Thus,
in what follows we assume that Jordρ(σ) 6= ∅.

Let us first recall the irreducibility criterion in this case, given in [8,
Theorem 3.5.]:

Theorem 4.1. Suppose that 0 ≤ a ≤ b and for α such that ναρ o σcusp
reduces we have a − α ∈ Z. The induced representation δ([ν−aρ, νbρ]) o σ
is irreducible if and only if {2a + 1, 2b + 1} ⊆ Jordρ(σ) and for every x ∈
Jordρ(σ)∩〈2a+1, 2b+1] such that x is defined we have ε((x , ρ), (x, ρ)) = −1.

We continue with a useful lemma.

Lemma 4.2. Let a ∈ 1
2Z, a > 0, such that 2a − 1 ∈ Jordρ(σ). The

induced representation νaρo σ is irreducible if and only if 2a+ 1 ∈ Jordρ(σ)
and εσ((2a− 1, ρ), (2a+ 1, ρ)) = −1. If νaρo σ reduces, in R(G) we have

νaρo σ = L(ν−aρ;σ) + τ,

where τ is an irreducible tempered representation, which is a discrete series
representation if and only if 2a+ 1 /∈ Jordρ(σ).

Proof. Irreducibility criterion is a special case of [8, Theorem 5.4].
In the same way as in the proof of Lemma 3.2 we deduce that every non-

tempered irreducible subquotient of νaρoσ is isomorphic to L(ν−aρ;σ), and
it is an integral part of the Langlands classification that it appears in the
composition series of νaρo σ with multiplicity one.

If 2a+ 1 /∈ Jordρ(σ), the claim of the lemma follows from Lemma 3.2.
If 2a + 1 ∈ Jordρ(σ) and εσ((2a − 1, ρ), (2a + 1, ρ)) = 1, an irreducible

subquotient τ of νaρ o σ has been constructed in [8, Lemma 3.3]. In that
case, σ is a subrepresentation of δ([ν−a+1ρ, νaρ]) o σ1, for a discrete series
σ1. Furthermore, δ([ν−a+1ρ, νaρ])⊗ σ1 is a unique irreducible constituent of
µ∗(σ) of the form δ([ν−a+1ρ, νaρ]) ⊗ π1, and appears there with multiplicity
one.
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Using the cuspidal support considerations, we conclude that every irre-
ducible tempered subquotient of νaρoσ is a subrepresentation of an induced
representation of the form δ([ν−aρ, νaρ]) o π. Since δ([ν−aρ, νaρ]) ⊗ σ1 is a
unique irreducible constituent of µ∗(νaρo σ) of the form δ([ν−aρ, νaρ])⊗ π′,
and appears there with multiplicity one, the lemma follows.

Proposition 4.3. Suppose that 2a + 1, 2a + 5 /∈ Jordρ(σ) and 2a + 3 ∈
Jordρ(σ). Let σds denote a discrete series subrepresentation, let τ1 denote
an irreducible tempered representation such that σ is a subrepresentation of
νa+1ρ o τ1, and let τ2 denote an irreducible tempered subrepresentation of
νa+2ρo σ. All irreducible non-tempered subquotients of δ([ν−aρ, νa+2ρ]) o σ
are

L(δ([ν−a−2ρ, νaρ]);σ), L(δ([ν−a−2ρ, νa+1ρ]); τ1), L(δ([ν−a−1ρ, νaρ]); τ2).

All three irreducible non-tempered subquotients appear with multiplicity one
in the composition series.

Proof. It is well-known that L(δ([ν−a−2ρ, νaρ]);σ) appears in the com-
position series of δ([ν−aρ, νa+2ρ]) o σ with multiplicity one. Irreducible sub-
quotients L(δ([ν−a−2ρ, νa+1ρ]); τ1) and L(δ([ν−a−1ρ, νaρ]); τ2) of the induced
representation δ([ν−aρ, νa+2ρ]) o σ have been obtained in the proof of [8,
Lemma 3.2.].

Let us prove that in this way we have determined all irreducible non-
tempered subquotients of δ([ν−aρ, νa+2ρ]) o σ. We denote an irreducible
subquotient by

L(δ([νy1ρ′1, ν
z1ρ′1]), . . . , δ([νykρ′k, ν

zkρ′k]); τ ′),

where y1 + z1 ≤ · · · ≤ yk + zk < 0, ρ′i cuspidal for all i = 1, . . . , k, and τ ′

tempered.
Then µ∗(δ([ν−aρ, νa+2ρ]) o σ) contains

δ([νy1ρ′1, ν
z1ρ′1])⊗ L(δ([νy2ρ′2, ν

z2ρ′2]), . . . , δ([νykρ′k, ν
zkρ′k]); τ ′),

and the structural formula implies that there are −a− 1 ≤ i ≤ j ≤ a+ 2 and
an irreducible constituent π ⊗ σ′ of µ∗(σ) such that

δ([νy1ρ′1, ν
z1ρ′1]) ≤ δ([ν−iρ, νaρ])× δ([νj+1ρ, νa+2ρ])× π

and

L(δ([νy2ρ′2, ν
z2ρ′2]), . . . , δ([νykρ′k, ν

zkρ′k]); τ ′) ≤ δ([νi+1ρ, νjρ]) o σ′.

The square-integrability of σ gives ρ′1
∼= ρ, z1 ≥ a, and i ∈ {a+ 1, a+ 2}.

If (i, z1) = (a+ 2, a), we get L(δ([ν−a−2ρ, νaρ]);σ).
If i = a + 2 and z1 6= a, we get z1 = a + 1, and [11, Lemma 8.3] gives

k = 1 and τ ′ ∼= τ1, so we obtain L(δ([ν−a−2ρ, νa+1ρ]); τ1).
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Suppose that i = a+ 1. Then z1 = a and

L(δ([νy2ρ′2, ν
z2ρ′2]), . . . , δ([νykρ′k, ν

zkρ′k]); τ ′) ≤ νa+2ρo σ.

Lemma 4.2 implies that either (k, τ ′) = (1, τ2) or (k, y2, z2, ρ
′
2) = (2,−a −

2,−a − 2, ρ). Using y2 + z2 ≥ y1 + z1 = −1 we get (k, τ ′) = (1, τ2) which
gives δ([ν−a−1ρ, νaρ]) ⊗ τ2. Consequently, we have obtained all irreducible
subquotients of δ([ν−aρ, νa+2ρ]) o σ.

Using the structural formula, together with Lemma 3.1, one can easily de-
duce that δ([ν−a−2ρ, νa+1ρ])⊗τ1 appears with multiplicity one in µ∗(δ([ν−aρ,
νa+2ρ]) o σ). Also, using structural formula and Lemma 3.2 we obtain that
δ([ν−a−1ρ, νaρ])⊗τ2 appears with multiplicity one in µ∗(δ([ν−aρ, νa+2ρ])oσ).
Thus, δ([ν−aρ, νa+2ρ])oσ is the multiplicity one representation and the propo-
sition is proved.

Proofs of the following three propositions follow in a similar way as in the
previously considered case, and are being left to the reader.

Proposition 4.4. Suppose that 2a + 1 /∈ Jordρ(σ), 2a + 3, 2a + 5 ∈
Jordρ(σ).

(1) Suppose that εσ((2a+3, ρ), (2a+5, ρ)) = 1. Let τ denote an irreducible
tempered subrepresentation of δ([ν−aρ, νa+2ρ]) o σ, let τ1 denote an
irreducible tempered representation such that σ is a subrepresentation
of νa+1ρo τ1, and let τ2 denote a unique irreducible tempered subrep-
resentation of νa+2ρo σ. All irreducible non-tempered subquotients of
δ([ν−aρ, νa+2ρ]) o σ are

L(δ([ν−a−2ρ, νaρ]);σ), L(δ([ν−a−2ρ, νa+1ρ]); τ1), L(δ([ν−a−1ρ, νaρ]); τ2).

(2) Suppose that εσ((2a + 3, ρ), (2a + 5, ρ)) = −1. Let τ1 denote an irre-
ducible tempered representation such that σ is a subrepresentation of
νa+1ρ o τ1. All irreducible non-tempered subquotients of the induced
representation δ([ν−aρ, νa+2ρ]) o σ are

L(δ([ν−a−2ρ, νaρ]);σ), L(δ([ν−a−2ρ, νa+1ρ]); τ1).

In both cases, all irreducible non-tempered subquotients appear with in the
composition series multiplicity one.

Proposition 4.5. Suppose that 2a + 1, 2a + 3 ∈ Jordρ(σ) and 2a + 5 /∈
Jordρ(σ).

(1) Suppose that εσ((2a + 1, ρ), (2a + 3, ρ)) = 1. Let τ denote an irre-
ducible tempered subrepresentation of δ([ν−aρ, νa+2ρ]) o σ, let τ1 de-
note an irreducible tempered representation such that σ is a subrep-
resentation of νa+1ρ o τ1, and let τ2 denote an irreducible tempered
subrepresentation of νa+2ρ o σ. All irreducible non-tempered subquo-
tients of δ([ν−aρ, νa+2ρ]) o σ are

L(δ([ν−a−2ρ, νaρ]);σ), L(δ([ν−a−2ρ, νa+1ρ]); τ1), L(δ([ν−a−1ρ, νaρ]); τ2).
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(2) Suppose that εσ((2a + 1, ρ), (2a + 3, ρ)) = −1. Let τ2 denote a unique
irreducible tempered subrepresentation of νa+2ρ o σ. All irreducible
non-tempered subquotients of δ([ν−aρ, νa+2ρ]) o σ are

L(δ([ν−a−2ρ, νaρ]);σ), L(δ([ν−a−1ρ, νaρ]); τ2).

In both cases, all irreducible non-tempered subquotients appear in the compo-
sition series with multiplicity one.

Proposition 4.6. Suppose that 2a + 1, 2a + 3, 2a + 5 ∈ Jordρ(σ), and
that δ([ν−aρ, νa+2ρ]) o σ reduces.

(1) Suppose that εσ((2a+1, ρ), (2a+3, ρ)) = εσ((2a+3, ρ), (2a+5, ρ)) = 1.
Let τ denote an irreducible tempered subrepresentation of the induced
representation δ([ν−aρ, νa+2ρ]) o σ, let τ1 denote an irreducible tem-
pered representation such that σ is a subrepresentation of νa+1ρo τ1,
and let τ2 denote a unique irreducible tempered subrepresentation of
νa+2ρo σ. All irreducible non-tempered subquotients of

δ([ν−aρ, νa+2ρ]) o σ

are

L(δ([ν−a−2ρ, νaρ]);σ), L(δ([ν−a−2ρ, νa+1ρ]); τ1), L(δ([ν−a−1ρ, νaρ]); τ2).

(2) Suppose that εσ((2a + 1, ρ), (2a + 3, ρ)) = 1 and εσ((2a + 3, ρ), (2a +
5, ρ)) = −1. Let τ1 stand for an irreducible tempered representation
such that σ is a subrepresentation of νa+1ρ o τ1. All irreducible non-
tempered subquotients of δ([ν−aρ, νa+2ρ]) o σ are

L(δ([ν−a−2ρ, νaρ]);σ), L(δ([ν−a−2ρ, νa+1ρ]); τ1).

(3) Suppose that εσ((2a+ 1, ρ), (2a+ 3, ρ)) = −1 and εσ((2a+ 3, ρ), (2a+
5, ρ)) = 1. Let τ2 stand for a unique irreducible tempered subrepre-
sentation of νa+2ρ o σ. All irreducible non-tempered subquotients of
δ([ν−aρ, νa+2ρ]) o σ are

L(δ([ν−a−2ρ, νaρ]);σ), L(δ([ν−a−1ρ, νaρ]); τ2).

In each case, all irreducible non-tempered subquotients appear in the compo-
sition series with multiplicity one.

To handle the remaining case, we need one technical result.

Lemma 4.7. Let x, y ∈ 1
2Z such that 0 ≤ x ≤ y−2. Let σds ∈ R(G) stand

for a discrete series such that 2x+ 1 /∈ Jordρ(σds), 2y−1, 2y+ 1 ∈ Jordρ(σds)
and εσds

((2y−1, ρ), (2y+1, ρ)) = 1. If τ is an irreducible subrepresentation of
δ([ν−xρ, νxρ])oσds, then νyρo τ has a unique irreducible tempered subrepre-
sentation, which contains an irreducible constituent of the form νyρ×νyρ⊗π
in the Jacquet module with respect to the appropriate parabolic subgroup.
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Proof. In R(G) we have δ([ν−xρ, νxρ]) o σds = τ + τ ′, where τ and τ ′

are mutually non-isomorphic irreducible tempered subrepresentations.
By Lemma 4.2, there is an irreducible tempered subrepresentation τ (1) of

νyρoσds. In R(G) we have δ([ν−xρ, νxρ])oτ (1) = τ1 +τ−1, where τ1 and τ−1

are mutually non-isomorphic irreducible tempered subrepresentations. Thus,
for i ∈ {1,−1} we have the following embedding and isomorphism:

τi ↪→ δ([ν−xρ, νxρ])× νyρo σds ∼= νyρ× δ([ν−xρ, νxρ]) o σds.

So, for i ∈ {1,−1} there is πi ∈ {τ, τ ′} such that τi is a subrepresentation
of νyρ o πi. Since δ([ν−xρ, νxρ]) ⊗ σds is a unique irreducible constituent
of the form δ([ν−xρ, νxρ]) ⊗ π appearing in µ∗(πi), and appears there with
multiplicity one, using the structural formula and Lemma 4.2 we obtain that
δ([ν−xρ, νxρ]) ⊗ τ (1) appears in µ∗(νyρ o πi) with multiplicity one. Con-
sequently, π1 6∼= π−1 and there is an i ∈ {1,−1} such that τi is a unique
irreducible subrepresentation of νyρo τ .

Also, from εσds
((2y − 1, ρ), (2y + 1, ρ)) = 1 we deduce that there is an

irreducible tempered representation τ (2) such that σds is a subrepresentation
of νyρo τ (2). This leads to an embedding

τi ↪→ νyρ× νyρ× δ([ν−xρ, νxρ]) o τ (2),

for i ∈ {1,−1}. Consequently, µ∗(τi) contains an irreducible constituent of
the form νyρ× νyρ⊗ π, for i ∈ {1,−1}.

Proposition 4.8. Let a, b ∈ 1
2Z such that a ≤ b − 3, and such that

δ([ν−aρ, νbρ])oσ reduces. Suppose that for x = a+ 1, a+ 2, . . . , b−1 we have
2x + 1 ∈ Jordρ(σ), and for y = a + 2, . . . , b− 1 we have εσ((2y − 1, ρ), (2y +
1, ρ)) = −1.

(1) Suppose that either 2a+1 /∈ Jordρ(σ) or 2a+1 ∈ Jordρ(σ) and εσ((2a+
1, ρ), (2a+3, ρ)) = 1, and either 2b+1 /∈ Jordρ(σ) or 2b+1 ∈ Jordρ(σ)
and εσ((2b−1, ρ), (2b+1, ρ)) = 1. Let τ1 denote an irreducible tempered
representation such that σ is a subrepresentation of νa+1ρ o τ1, τ3
denote a unique irreducible tempered subrepresentation of νbρoσ, and
τ4 denote a unique irreducible tempered subrepresentation of νbρo τ1.
All irreducible non-tempered subquotients of δ([ν−aρ, νbρ]) o σ are

L(δ([ν−bρ, νaρ]);σ), L(δ([ν−bρ, νa+1ρ]); τ1),

L(δ([ν−b+1ρ, νaρ]); τ3), L(δ([ν−b+1ρ, νa+1ρ]); τ4).

(2) Suppose that either 2a + 1 /∈ Jordρ(σ) or 2a + 1 ∈ Jordρ(σ) and
εσ((2a + 1, ρ), (2a + 3, ρ)) = 1, and 2b + 1 ∈ Jordρ(σ), with εσ((2b −
1, ρ), (2b+1, ρ)) = −1. Let τ1 denote an irreducible tempered represen-
tation such that σ is a subrepresentation of νa+1ρo τ1. All irreducible
non-tempered subquotients of δ([ν−aρ, νbρ]) o σ are

L(δ([ν−bρ, νaρ]);σ), L(δ([ν−bρ, νa+1ρ]); τ1).
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(3) Suppose that 2a + 1 ∈ Jordρ(σ), with εσ((2a + 1, ρ), (2a + 3, ρ)) =
−1, and either 2b + 1 /∈ Jordρ(σ) or 2b + 1 ∈ Jordρ(σ) and εσ((2b −
1, ρ), (2b + 1, ρ)) = 1. Let τ3 denote a unique irreducible tempered
subrepresentation of νbρoσ. All irreducible non-tempered subquotients
of δ([ν−aρ, νbρ]) o σ are

L(δ([ν−bρ, νaρ]);σ), L(δ([ν−b+1ρ, νaρ]); τ3).

In each case, all the irreducible non-tempered subquotients appear with multi-
plicity one in the composition series.

Proof. Let us comment only the representation L(δ([ν−b+1ρ, νa+1ρ]); τ4)
appearing as an irreducible subquotient in (1), other parts of the proposi-
tion follow directly from the proofs of [8, Lemmas 3.2., 3.4]. If 2a + 1 /∈
Jordρ(σ), a tempered representation τ4 is constructed in Lemma 4.2, and if
2a+1 ∈ Jordρ(σ) and εσ((2a+1, ρ), (2a+3, ρ)) = 1, then τ4 is constructed in
Lemma 4.7. Note that µ∗(L(δ([ν−b+1ρ, νa+1ρ]); τ4)) contains an irreducible
constituent of the form νa+1ρ⊗ π.

We have the following embeddings and an isomorphism:

L(δ([ν−b+1ρ, νa+1ρ]); τ4) ↪→ δ([ν−b+1ρ, νa+1ρ]) o τ4

↪→ δ([ν−b+1ρ, νa+1ρ])× νbρo τ1

∼= νbρ× δ([ν−b+1ρ, νa+1ρ]) o τ1.

Thus, the Frobenius reciprocity implies that µ∗(L(δ([ν−b+1ρ, νa+1ρ]); τ4)) con-
tains an irreducible constituent of the form νbρ⊗ π.

From

L(δ([ν−b+1ρ, νa+1ρ]); τ4) ≤ δ([ν−a−1ρ, νb−1ρ]) o τ4

≤ δ([ν−a−1ρ, νb−1ρ])× νbρo τ1,

follows that there is an irreducible subquotient π1 of δ([ν−a−1ρ, νb−1ρ])× νbρ
such that L(δ([ν−b+1ρ, νa+1ρ]); τ4) is an irreducible subquotient of π1 o τ1.
If µ∗(τ1) does not contain an irreducible constituent of the form νbρ ⊗ π, it
follows at once that the Jacquet module of π1 with respect to the appropriate
parabolic subgroup contains an irreducible constituent of such a form, so
π1
∼= δ([ν−a−1ρ, νbρ]). If µ∗(τ1) contains an irreducible constituent of the

form νbρ⊗π, it follows that εσ((2b−1, ρ), (2b+1, ρ)) = 1, and in the same way
as before we obtain that µ∗(L(δ([ν−b+1ρ, νa+1ρ]); τ4)) contains an irreducible
constituent of the form νbρ × νbρ ⊗ π. Definition of τ1 implies that µ∗(τ1)
does not contain an irreducible constituent of the form νbρ × νbρ ⊗ π, so
again the Jacquet module of π1 with respect to the appropriate parabolic
subgroup has to contain an irreducible constituent of the form νbρ ⊗ π, so
π1
∼= δ([ν−a−1ρ, νbρ]).
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Thus, we have

L(δ([ν−b+1ρ, νa+1ρ]); τ4) ≤ δ([ν−a−1ρ, νbρ])oτ1 ≤ δ([ν−aρ, νbρ])×νa+1ρoτ1,
so there is an irreducible subquotient π2 of νa+1ρo τ1 such that L(δ([ν−b+1ρ,
νa+1ρ]); τ4) is contained in δ([ν−aρ, νbρ]) o π2.

Since µ∗(L(δ([ν−b+1ρ, νa+1ρ]); τ4)) contains an irreducible constituent
of the form νa+1ρ ⊗ π, using the structural formula we obtain that µ∗(π2)
contains an irreducible constituent of such a form, and using Lemma 4.2 we
deduce π2

∼= σ.

5. Ends of the first complementary series in the positive case

Let us first recall the irreducibility criterion in the case 1
2 , given in [8,

Theorem 4.6.]:

Theorem 5.1. Suppose that 1
2 ≤ b, b − 1

2 is a non-negative integer, and

for α such that ναρ o σcusp reduces we have α − 1
2 ∈ Z. The induced rep-

resentation δ([ν
1
2 ρ, νbρ]) o σ is irreducible if and only if 2b + 1 ∈ Jordρ(σ),

ε(min(Jordρ(σ)), ρ) = −1, and for every x ∈ Jordρ(σ)∩ [min(Jordρ(σ)), 2b+1]
such that x is defined we have ε((x , ρ), (x, ρ)) = −1.

Further, let us recall the irreducibility criterion in the remaining case,
given in [8, Theorem 5.4.]:

Theorem 5.2. Suppose that 1 ≤ a ≤ b and for α such that ναρ o σcusp
reduces we have a − α ∈ Z. The induced representation δ([νaρ, νbρ]) o σ is
irreducible if and only if one of the following holds:

(1) [2a− 1, 2b+ 1] ∩ Jordρ(σ) = ∅.
(2) 2b + 1 ∈ Jordρ(σ) and for every x ∈ [2a + 1, 2b + 1] ∩ Jordρ(σ) such

that x is defined and x ≥ 2a− 1 we have ε((x , ρ), (x, ρ)) = −1.

The following result can be proved in the same way as Lemma 4.2, using
[8, Lemma 4.2] and the proof of [8, Lemma 4.4].

Proposition 5.3. Suppose that Jordρ(σ) consists of even integers. Then

ν
1
2 ρoσ is irreducible if and only if 2 ∈ Jordρ(σ) and εσ(2, ρ) = −1. If ν

1
2 ρoσ

reduces, in R(G) we have

ν
1
2 ρo σ = L(ν−

1
2 ρ;σ) + τ,

where τ is an irreducible tempered representation, which is a discrete series
representation if and only if 2 /∈ Jordρ(σ).

Now we state a result which can be obtained in the same way as the ones
from previous section, using the proof of [8, Lemma 4.4].

Proposition 5.4. Suppose that 2 ∈ Jordρ(σ) and 4 /∈ Jordρ(σ). Let σ(1)

denote a unique discrete series subrepresentation of ν
3
2 ρo σ.
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(1) Suppose that εσ(2, ρ) = 1. Let σds stand for a unique discrete series

subrepresentation of δ([ν
1
2 ρ, ν

3
2 ρ])oσ, and let σ(2) stand for a discrete

series such that σ is a subrepresentation of ν
1
2 ρo σ(2). All irreducible

non-tempered subquotients of δ([ν
1
2 ρ, ν

3
2 ρ]) o σ are

L(δ([ν−
3
2 ρ, ν−

1
2 ρ]);σ), L(ν−

1
2 ρ;σ(1)), L(δ([ν−

3
2 ρ, ν

1
2 ρ]);σ(2)).

(2) Suppose that εσ(2, ρ) = −1. All irreducible non-tempered subquotients

of δ([ν
1
2 ρ, ν

3
2 ρ]) o σ are

L(δ([ν−
3
2 ρ, ν−

1
2 ρ]);σ), L(ν−

1
2 ρ;σ(1)).

In both cases, all the irreducible non-tempered subquotients appear in the com-
position series with multiplicity one.

Proof of the following proposition is left to the reader.

Proposition 5.5. Suppose that 2, 4 ∈ Jordρ(σ), and that δ([ν
1
2 ρ, ν

3
2 ρ])o

σ reduces.

(1) Suppose that εσ(2, ρ) = 1 and εσ((2, ρ), (4, ρ)) = 1. Let τ denote a

unique irreducible tempered subrepresentation of δ([ν
1
2 ρ, ν

3
2 ρ]) o σ,

let σ(2) denote a discrete series such that σ is a subrepresentation of
ν

1
2 ρo σ(2), and let τ5 stand for a unique irreducible tempered subrep-

resentation of ν
3
2 ρ o σ. All irreducible non-tempered subquotients of

δ([ν
1
2 ρ, ν

3
2 ρ]) o σ are

L(δ([ν−
3
2 ρ, ν−

1
2 ρ]);σ), L(δ([ν−

3
2 ρ, ν

1
2 ρ]);σ(2)), L(ν−

1
2 ρ; τ5).

(2) Suppose that εσ(2, ρ) = 1 and εσ((2, ρ), (4, ρ)) = −1. Let σ(2) denote

a discrete series such that σ is a subrepresentation of ν
1
2 ρo σ(2). All

irreducible non-tempered subquotients of δ([ν
1
2 ρ, ν

3
2 ρ]) o σ are

L(δ([ν−
3
2 ρ, ν−

1
2 ρ]);σ), L(δ([ν−

3
2 ρ, ν

1
2 ρ]);σ(2)).

(3) Suppose that εσ(2, ρ) = −1 and εσ((2, ρ), (4, ρ)) = 1. Let τ5 stand

for a unique irreducible tempered subrepresentation of ν
3
2 ρ o σ. All

irreducible non-tempered subquotients of δ([ν
1
2 ρ, ν

3
2 ρ]) o σ are

L(δ([ν−
3
2 ρ, ν−

1
2 ρ]);σ), L(ν−

1
2 ρ; τ5).

In each case, all the irreducible non-tempered subquotients appear in the com-
position series with multiplicity one.

Proposition 5.6. Let b ∈ 1
2Z, b ≥ 5

2 , be such that b − 1
2 is an integer.

Suppose that {2, 4, . . . , 2b− 1} ⊆ Jordρ(σ) and that for x = 4, 6, . . . , 2b− 1 we

have εσ((x− 2, ρ), (x, ρ)) = −1. Suppose that δ([ν
1
2 ρ, νbρ]) o σ reduces.
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(1) Suppose that εσ(2, ρ) = 1, 2b + 1 ∈ Jordρ(σ) and εσ((2b − 1, ρ), (2b +

1, ρ)) = −1. Let σ(2) denote a discrete series such that σ is a subrep-

resentation of ν
1
2 ρoσ(2). All irreducible non-tempered subquotients of

δ([ν
1
2 ρ, νbρ]) o σ are

L(δ([ν−bρ, ν−
1
2 ρ]);σ), L(δ([ν−bρ, ν

1
2 ρ]);σ(2)).

(2) Suppose that εσ(2, ρ) = 1, and either 2b + 1 /∈ Jordρ(σ) or 2b + 1 ∈
Jordρ(σ) and εσ((2b− 1, ρ), (2b+ 1, ρ)) = 1. Let σ(2) denote a discrete

series such that σ is a subrepresentation of ν
1
2 ρ o σ(2), let τ3 denote

a unique irreducible tempered subrepresentation of νbρo σ, and let τ6
denote a unique irreducible tempered subrepresentation of νbρ o σ(2).
All irreducible non-tempered subquotients of δ([ν

1
2 ρ, νbρ]) o σ are

L(δ([ν−bρ, ν−
1
2 ρ]);σ), L(δ([ν−bρ, ν

1
2 ρ]);σ(2)),

L(δ([ν−b+1ρ, ν−
1
2 ρ]); τ3), L(δ([ν−b+1ρ, ν

1
2 ρ]); τ6).

(3) Suppose that εσ(2, ρ) = −1, and either 2b + 1 /∈ Jordρ(σ) or 2b + 1 ∈
Jordρ(σ) and εσ((2b − 1, ρ), (2b + 1, ρ)) = 1. Let τ3 denote a unique
irreducible tempered subrepresentation of νbρo σ. All irreducible non-
tempered subquotients of δ([ν

1
2 ρ, νbρ]) o σ are

L(δ([ν−bρ, ν−
1
2 ρ]);σ), L(δ([ν−b+1ρ, ν−

1
2 ρ]); τ3).

In each case, all the irreducible non-tempered subquotients appear in the com-
position series with multiplicity one.

Proof. Let us only discuss the subquotient L(δ([ν−b+1ρ, ν
1
2 ρ]); τ6) in

the case when εσ(2, ρ) = 1, and either 2b+ 1 /∈ Jordρ(σ) or 2b+ 1 ∈ Jordρ(σ)
and εσ((2b − 1, ρ), (2b + 1, ρ)) = 1. Other parts of the proof can be deduced
in the same way as before, using the proofs of [8, Lemmas 4.4, 4.5.].

Note that µ∗(L(δ([ν−b+1ρ, ν
1
2 ρ]); τ6)) contains irreducible constituents of

the form ν
1
2 ρ ⊗ π1 and of the form νbρ ⊗ π2, since τ6 is a subrepresenta-

tion of νbρ o σ(2). Also, µ∗(L(δ([ν−b+1ρ, ν
1
2 ρ]); τ6)) contains an irreducible

constituent of the form νbρ × νbρ ⊗ π if and only if 2b + 1 ∈ Jordρ(σ) and
εσ((2b− 1, ρ), (2b+ 1, ρ)) = 1. From

L(δ([ν−b+1ρ, ν
1
2 ρ]); τ6) ≤ δ([ν− 1

2 ρ, νb−1ρ])oτ6 ≤ δ([ν−
1
2 ρ, νb−1ρ])×νbρoσ(2),

in the same way as in the proof of Proposition 4.8 we get

L(δ([ν−b+1ρ, ν
1
2 ρ]); τ6) ≤ δ([ν− 1

2 ρ, νbρ]) o σ(2).

Thus,

L(δ([ν−b+1ρ, ν
1
2 ρ]); τ6) ≤ δ([ν 1

2 ρ, νbρ])× ν 1
2 ρo σ(2),

so there is an irreducible subquotient π of ν
1
2 ρo σ(2) such that L(δ([ν−b+1ρ,

ν
1
2 ρ]); τ6) is contained in δ([ν

1
2 ρ, νbρ]) o π. Since µ∗(L(δ([ν−b+1ρ, ν

1
2 ρ]); τ6))
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contains an irreducible constituent of the form ν
1
2 ρ ⊗ π1, using Proposition

5.3 we obtain π ∼= σ.

Remaining case is covered by the following proposition, which can be
proved following the same lines as in the previously considered cases, using
proofs of [8, Lemmas 5.2., 5.3].

Proposition 5.7. Let a, b ∈ 1
2Z such that b − a ∈ Z and 1 ≤ a ≤ b − 1.

Suppose that for x = a − 1, a, . . . , b − 1 we have 2x + 1 ∈ Jordρ(σ), and that
for y = a, . . . , b − 1 we have εσ((2y − 1, ρ), (2y + 1, ρ)) = −1. Suppose that
δ([νaρ, νbρ]) o σ reduces, and let τ3 stand for a unique irreducible tempered
subrepresentation of νbρ o σ. All irreducible non-tempered subquotients of
δ([νaρ, νbρ]) o σ are

L(δ([ν−bρ, ν−aρ]);σ), L(δ([ν−b+1ρ, ν−aρ]); τ3),

both appearing in the composition series with multiplicity one.
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[11] I. Matić and M. Tadić, On Jacquet modules of representations of segment type,

Manuscripta Math., 147 (2015), pp. 437–476.



FIRST COMPLEMENTARY SERIES OF GENERALIZED PRINCIPAL SERIES 17
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Krajevi prvih komplementarnih serija generaliziranih osnovnih
serija

Darija Brajković Zorić i Ivan Matić

Sažetak. U radu ćemo odrediti sve ireducibilne netemperi-

rane kompozicione faktore induciranih reprezentacija koje se po-

javljuju u krajevima prvih komplementarnih serija generaliziranih

osnovnih serija simplektičke, specijalne neparno ortogonalne ili

unitarne grupe nad nearhimedskim lokalnim poljem.
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