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ENDS OF THE FIRST COMPLEMENTARY SERIES OF
GENERALIZED PRINCIPAL SERIES

DARI1JA BRAJKOVIC ZORIG AND IVAN MATIC

ABSTRACT. We determine all irreducible non-tempered composition
factors of induced representations appearing at the ends of the first comple-
mentary series of generalized principal series representation of either sym-
plectic, special odd-orthogonal, or unitary group over a non-archimedean
local field.

1. INTRODUCTION

The generalized principal series present a well-studied and particularly im-
portant class of induced representations of classical groups over non-archime-
dean local fields. These are representations of the form 7 x o, induced from
the representation m ® o of the maximal parabolic subgroup having an ir-
reducible essentially square-integrable representation 7w on the general linear
group part and a discrete series ¢ on the classical group part. Reducibility
points of such representations of symplectic and odd orthogonal groups have
been determined in [16], while the unitary group case has been handled in
[8], but more detailed description of the composition factors is still missing,
except in some particular cases, as in [15].

By the classical result of [19], an irreducible essentially square-integrable
representation of the general linear group is of the form §([v%p,%p]), and is
attached to the segment [1%p, 1°p], where p is an irreducible cuspidal represen-
tation of the general linear group. We are primarily interested in determining
the irreducible non-tempered composition factors appearing at the ends of the
first complementary series, i.e., we start from the unitary generalized principal
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series 0([¥~%p,v%p]) x o, and describe the non-tempered irreducible subquo-
tients of §([v =% p, v*T5p]) x o, for minimal positive s such that this induced
representation reduces.

It is well-known that all the irreducible representations appearing at the
ends of the complementary series are unitarizable, so we construct a class
of unitarizable irreducible non-tempered representations. Furthermore, the
situation studied should be rather similar to the one studied in [15], providing
short and approachable composition series.

One possible approach to the investigation of the generalized principal
series is via the Moeeglin-Tadi¢ classification of discrete series, provided in
[12, 14], and in the odd GSpin case in [4]. This classification now holds
unconditionally, due to [1], [13, Théoréme 3.1.1] and [2, Theorem 7.8]. Having
this classification at hand, we provide a uniform approach for symplectic,
special odd-orthogonal and unitary groups. We start from the results of [8], or
[16], and rely on algebraic methods, which are based mainly on the calculation
of the Jacquet modules using the structural formula provided in [17].

Our approach might be regarded as a further development of the methods
of [5], [7] and [15]. The obtained results show that induced representations
appearing at the end of the first complementary series contain at most four
mutually non-isomorphic irreducible non-tempered subquotients, which all
appear in the composition with the multiplicity one. Also, it appears that
most of the irreducible non-tempered subquotients have been constructed in
[8] and [16]. The similar construction has also appeared to be useful for
determining the reducibility points in more general situations ([6], [9], [10]).

We note that all our results and proofs can also be used for the odd
GSpin groups over a non-archimedean local field of characteristic zero without
any change, based on the discrete series classification provided in [4] and the
structural formula given in the odd GSpin case in [3].

Let us now describe the contents of the paper in more detail. In the fol-
lowing section we introduce the notation and present some preliminaries. In
the third section we provide several technical results, and discuss the special
case Jord,(0) = (. The case of non-empty Jord,(o) is studied in the final
two sections. In the fourth section we determine all the non-tempered irre-
ducible subquotients appearing at the end of the first complementary series
§([v=2 5 p, v 5p]) x o, when —a + s < 0, using a case-by-case consideration.
In the final section we describe all the non-tempered irreducible subquotients
when —a + s > 0.

2. PRELIMINARIES

Through the paper, we denote by F' a non-archimedean local field. Let
us fix one of the following series {G,,} of classical groups over F.
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In the odd orthogonal group case, let Yy denote a fixed anisotropic or-
thogonal vector space over F' of odd dimension, and let us consider the Witt
tower based on Y. For n such that 2n+1 > dimYj, there is exactly one space
V,, in the tower of dimension 2n+ 1. We let GG,, denote the special orthogonal
group of this space.

If V,, denotes the symplectic space of dimension 2n in the corresponding
Witt tower, we let G,, stand for the symplectic group of this space. We also
consider the unitary groups U(n, F’/F), for a separable quadratic extension
F’of F. There is also an anisotropic unitary space Yy over F’, and the Witt
tower of unitary spaces V,, based on Yy. Let GG, stand for the unitary group
of the space V,, of dimension either 2n + 1 or 2n.

In the symplectic and odd orthogonal case we set F/ = F.

Let us fix the set of standard parabolic subgroups such that their Levi
factors are of the form M = GL(ny, F') x --- x GL(ng, F') x G/, where
GL(m, F") denotes the general linear group of rank m over F’. If 4; is a
representation of GL(n;, F') and 7 a representation of G, the normalized
parabolically induced representation Indff (61 ® - ® 0, ®7) will be denoted
by 61 X -+ X § X 7. A similar notation is used to denote a parabolically
induced representation of GL(m, F’).

Let Irr(G,,) stand for the set of all irreducible admissible representations
of G,,. Let R(G,,) stand for the Grothendieck group of admissible representa-
tions of finite length of G,, and define R(G) = ®,>0R(Gy). In a similar way
we define Irt(GL(n, F')) and R(GL) = &,>0R(GL(n, F")).

For an irreducible smooth representation 7 € R(GL), let 7 stand for the
contragredient representation of 7. If F' = F’| we say that « is F’/F-selfdual
if r =27 If F# F', we denote by 6 the non-trivial F-automorphism of F”,
let 7™ denote the representation g — 7(6(g)), and say that the representation
mis F'/F-selfdual if 7 > 7.

For ¢ € Irr(G,) and 1 < k < n, we let rg, (o) stand for the normal-
ized Jacquet module of o with respect to the parabolic subgroup P, having
the Levi subgroup equal to GL(k, F') x G,,_x. We identify r)(o) with its
semisimplification in R(GL(k, F’)) ® R(Gy—t) and consider

p(o)=1®0+ Y ra(o) € R(GL) ® R(G).
k=1

We denote by v a composition of the determinant mapping with the nor-
malized absolute value on F’. Let p € R(GL) denote an irreducible su-
percuspidal representation. By a segment A we mean a set of the form
[p,v™p] = {p,vp,...,v"p}, for a non-negative integer m. The induced
representation v™p x v™~! x ... x p has a unique irreducible subrepresen-

tation ([19]), which we denote by §(A). Representation 0(A) is essentially
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square-integrable, and by [19] every irreducible essentially square-integrable
representation in R(GL) can be obtained in this way.

In the following result we state the structural formula which is crucial for
our calculations with the Jacquet modules ([17]).

LEMMA 2.1. Let p € R(GL) be an irreducible cuspidal F'/F-selfdual rep-
resentation and k,l € R such that k+1 € Z>q. Let o € R(G) be an irreducible
admissible representation. Write p*(o) = > 7 ® o'. Then the following
holds:

l l
SN D a(v e vEpl) x 6( T p,vtp)) x @

i=—k—1 j=i 1,0’

® o([vHp,v7p)) xo,

(8w p,v'p]) x 0)

We omit §([v*p,v¥p]) if x > y.

Let us recall the subrepresentation version of the Langlands classification
for the general linear groups.

Let 6 € R(GL) stand for an irreducible essentially square-integrable rep-
resentation. Then there is a unique e(8) € R such that »~¢()§ is unitarizable,
and e(§([v%p,1°p])) = (a +b)/2.

Suppose that d1,d2,...,d; are irreducible essentially square-integrable
representations such that e(d1) < e(d2) < ... < e(dg). Then the induced
representation d; X ds X -+ X J has a unique irreducible subrepresentation,

which we denote by L(1,02,...,d;). This irreducible subrepresentation is
called the Langlands subrepresentation, it appears with multiplicity one in
the composition series of §; X dy X - -- X g, and every irreducible representa-
tion 7 € R(GL) is isomorphic to some L(d1,0a,...,dx), the representations
01,09, ...,0, being unique up to a permutation.

We also use the subrepresentation version of the Langlands classification
for classical groups, which enables us to realize a non-tempered irreducible rep-
resentation 7 of GG,, as the unique irreducible subrepresentation of an induced
representation of the form §; X §5 X - - - X 0 X 7, where 7 is an irreducible tem-
pered representation of some Gy, and 01,ds2,...,0, € R(GL) are irreducible
essentially square-integrable representations such that e(d;) < e(dy) < --- <
e(dx) < 0. Then we write m = L(01,02,...,0k;T).

By the Moeglin-Tadié classification of discrete series [12, 14], a discrete
series o € (G, corresponds to an admissible triple which consists of the Jordan
block, the partial cuspidal support, and the e-function. Elements appearing
in the Jordan block are of the form (a,p), where a is a positive integer of
the appropriate parity and p € R(GL) is a F'/F-selfdual representation. The
e-function is defined on the subset of Jord U Jord x Jord and attains values in
{£1}. More details on those invariants can be found in [14, 16] and in [4],
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where slightly different approach, which also covers the classical group case,
has been used.

For a discrete series o4 € R(G), we denote by Jord(ogs) the corre-
sponding set of the Jordan blocks, and by €,,, the corresponding e-function.
For an irreducible F’/F-selfdual cuspidal representation p of GL(n, F’) let
Jord,(og4s) = {x : (z,p) € Jord(ogs)}. If Jord,(04s) # 0 and = € Jord,(oas),
set = max{y € Jord,(o4s) : y < x}, if it exists. To define the e function on
the ordered pairs of the form ((a1, p1), (ag, p2)) € Jord x Jord, it is enough to
define it on the ordered pairs of the form ((x_, p), (x, p)).

3. SOME TECHNICAL RESULTS

In this section we recall and obtain some useful technical results. The
first one follows from [18, Theorem 8.2].

LEMMA 3.1. Let 01 € R(G) denote a discrete series representation, and
let (a, p) € Jord(oy) be such that a_ is defined and a- < a—4. Then for every x
such that % is an integer and a_+4 < x < a, there exists a discrete series o

such that o1 is a subrepresentation of 6([u%p, v p|) X oo. Furthermore, if
an irreducible constituent of the form 5([1/% P, V%p}) ®m appears in p*(o1),

then m & o9 and 5([1/%,0,1/%1/)]) ® og appears in p*(o1) with multiplicity
one.

LEMMA 3.2. Let 0 € R(G) denote a discrete series representation and let
p € R(GL) denote an irreducible cuspidal F'/F-selfdual representation. Let
a € %Z, a >0, such that 2a — 1 € Jord,(c). Suppose that for a non-negative
integer k we have 2a+2i+1 ¢ Jord,(o) fori=0,1,...,k. Then the induced
representation 6([v%p, v ¥ p]) x o contains a discrete series subrepresentation,
which we denote by 045, and in R(G) we have

([ p,v**p]) x o = L(6([v™"Fp,v™]); 0) + 0.

PRrROOF. Discrete series o4 is constructed in [18, Theorem 8.2].
Let us now describe the non-tempered irreducible subquotients of 6([v%p,
v2%%p]) x 0. Every such irreducible subquotient is of the form

L(6([v™ pr, v p1])s oo 0([V° Py VY7 i) 7).

where z;+y; <0fori=1,...,m,and z;+y; < x;41+y;41 fori=1,...,m—1.
Since L(§([v** p1,v¥ p1]), -, 0([V"™ pm, VY™ pi]); T) is a subrepresentation of

([ p1, v p1]) X L(0([v"2p2, v*2p2]), . . ., S([V™ prn, V™ pi] )5 T),

it follows that u*(5([v%p, v *p]) x o) contains

([ p1, v p1]) @ L(0([V*2 p2, v pa]), - . s (V" i, V9™ pin] )5 T)-
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By Lemma 2.1, there are 4,5, a — 1 < ¢ < j < a + k and an irreducible
constituent 7 ® o of p*(o) such that

5([™ pr, v pr]) < ([, 1)  8([57 1 p, v+ p]) x
and
L(8([v™2 2, v"2 pa)), o 8([V* prs V¥ pra]); ) < 8([v"F p, 7 p]) 3 o

Since 7 + y1 < 0, the square-integrability of ¢ implies p; = p, ¢ > a, and
j = a+ k. Thus, m is of the form &([v* p,v=""1p]) x §([v=2Ttp,v¥1p)]).
Since o is a discrete series, it follows that 1 = —i. If y; # —a, pu* (o)
contains an irreducible constituent of the form &([v=%"1p,v¥1p]) @ T where
—i+y1 = 21 + 11 < 0. Square-integrability of o gives y1 > a, and i < a+ k
implies y; < a+k. Since p*(o) contains an irreducible constituent of the form
v¥'p ® 7, this contradicts the definition of Jord,(¢). Thus, y; = —a and

L(5([V*2 pa, Y2 p3]), - . o, S ([0 pons VY7 pi]); 7) < S([v L p, TR p]) X 0.

Suppose that ¢ # a+ k. Using the cuspidal support considerations we directly
obtain m > 2. Also, u*(§([v"p, 2 *p]) x o) contains &([v*2pa, v¥2ps]) ®
L(6([v™3ps, v¥3p3)), ..., S([V"™ pm, VY™ p]); T). Repeating the same reasoning
as before, we conclude y; = —i— 1, which contradicts x1 +vy1 < x2+1vy2. Thus,
i=a+k, m=1and 7 =2 ¢. In other words, every non-tempered irreducible
subquotient of &([v%p, v**¥p]) x & is isomorphic to L(§([v=%%p,v=%]); ),
and it is an integral part of the Langlands classification that it appears in the
composition series of §([v%p, v*t¥p]) x o with multiplicity one.

Using the cuspidal support considerations, we deduce that every irre-
ducible tempered subquotient of §([v%p, 2% p]) x o is a discrete series, whose
set of the Jordan blocks equals Jord(cgs). By Lemma 3.1, the Jacquet mod-
ule of such a discrete series with respect to the appropriate parabolic sub-
group contains an irreducible constituent of the form 6([v%p, v %p]) @ 7. It
follows from the structural formula that the only irreducible constituent of
w*(6([v%p, v¥t*p]) x o) of such a form is §([v%p, v *p]) ® ¢ and it appears
there with multiplicity one. Thus, 6([v%p,v**¥p]) x o contains a unique dis-
crete series representation and the lemma is proved. ]

Through the rest of the paper we fix an irreducible cuspidal unitarizable
representation p € R(GL) and a discrete series 0 € R(G). It is well-known,
and also follows from [16, 8] that ([v*p,v¥Yp]) x o is irreducible if p is not
F’/F-selfdual, so we can also assume that p is F'/F-selfdual. We denote
by (Jord(o), €q, Ocusp) the admissible triple corresponding to o. Also, let us
denote by a a unique non-negative real number such that v%p x 04y, reduces.
It follows from [1] and [13, Théoréme 3.1.1] that a € 1Z.

In this section we also comment the simple case when Jord,(c) = (). Note
that this implies o € {0,3}. Let a € 1Z, a > 0. It is well-known that the
induced representation 6([v~%p, v%p]) x o is irreducible if and only if a — « is
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not an integer. Furthermore, if a — « is an integer then 6([v~%p, v%p]) X o is
a direct sum of two mutually non-isomorphic tempered representations.

Suppose that §([v=%p, v%p]) x o is irreducible. Then §([v =92 p, 192 p]) x
o reduces and presents the end of the first complementary series. In the same
way as in the proof of Lemma 3.2, we can conclude that

L(([v=""2p,v"" 2 p]);0)

is a unique irreducible non-tempered subquotient of §([v=9"2 p, 9% 2 p]) x o,
and it appears with multiplicity one.

4. ENDS OF THE FIRST COMPLEMENTARY SERIES IN THE NON-POSITIVE
CASE

In this section we start with a description of the non-tempered irreducible
representations appearing at the ends of the first complementary series. Thus,
in what follows we assume that Jord, (o) # 0.

Let us first recall the irreducibility criterion in this case, given in [8,
Theorem 3.5.]:

THEOREM 4.1. Suppose that 0 < a < b and for a such that v*p X 0cysp
reduces we have a — o € Z. The induced representation 5([v=%p,v’p]) x o
is irreducible if and only if {2a + 1,2b+ 1} C Jord,(o) and for every x €
Jord,(o)N(2a+1,2b+1] such that x_ is defined we have e((x_, p), (z, p)) = —1.

We continue with a useful lemma.

LEMMA 4.2. Let a € 3Z, a > 0, such that 2a — 1 € Jord,(c). The
induced representation v*p x o is irreducible if and only if 2a+ 1 € Jord,(o)
and €5((2a — 1,p), (2a + 1, p)) = —1. If v*p X o reduces, in R(G) we have

vipxo=Lv %;0o)+T,

where T is an irreducible tempered representation, which is a discrete series
representation if and only if 2a + 1 ¢ Jord, (o).

PROOF. Irreducibility criterion is a special case of [8, Theorem 5.4].

In the same way as in the proof of Lemma 3.2 we deduce that every non-
tempered irreducible subquotient of ¥%p x ¢ is isomorphic to L(v~%p; o), and
it is an integral part of the Langlands classification that it appears in the
composition series of v%p x o with multiplicity one.

If 2a + 1 ¢ Jord, (o), the claim of the lemma follows from Lemma 3.2.

If 2a + 1 € Jord,(o) and €,((2a — 1, p), (2a + 1, p)) = 1, an irreducible
subquotient 7 of v*p x o has been constructed in [8, Lemma 3.3]. In that
case, o is a subrepresentation of §([v=%*1p,v%p]) x o1, for a discrete series
o1. Furthermore, §([v=%1p,v%p]) ® o1 is a unique irreducible constituent of
w*(o) of the form §([v=%T1p v%p]) ® 71, and appears there with multiplicity
one.



8 D. BRAJKOVIC ZORIC AND I. MATIC

Using the cuspidal support considerations, we conclude that every irre-
ducible tempered subquotient of v%p x ¢ is a subrepresentation of an induced
representation of the form o([v~%p,v%p]) x 7. Since §([v~%p,v%p]) ® 071 is a
unique irreducible constituent of u*(v%p x o) of the form §([v=%p, v%p]) @ 7',
and appears there with multiplicity one, the lemma follows.

PROPOSITION 4.3. Suppose that 2a + 1,2a + 5 ¢ Jord,(c) and 2a+ 3 €
Jord,(c). Let o4s denote a discrete series subrepresentation, let 1 denote
an irreducible tempered representation such that o is a subrepresentation of
vt % 711, and let 7o denote an irreducible tempered subrepresentation of
v 2p % 0. All irreducible non-tempered subquotients of 6([v=%p, v 2p]) x o
are

L(([v=*2p,v*p]); 0), L(S([v ™" p, v p]); 1), L(S([v™ """ p, v*p]); T2).

All three irreducible non-tempered subquotients appear with multiplicity one
in the composition series.

PROOF. It is well-known that L(§([v=%"2p,v%p]); o) appears in the com-
position series of §([v=%p, v**2p]) x o with multiplicity one. Irreducible sub-
quotients L(6([v=¢"2p,v** Lp]); 71) and L(6([v=2"1p, v?p]); 72) of the induced
representation §([v=%p,v**2p]) x o0 have been obtained in the proof of [8,
Lemma 3.2.].

Let us prove that in this way we have determined all irreducible non-
tempered subquotients of §([v=%p, % 2p]) x 0. We denote an irreducible
subquotient by

L[ o, v ph])s - s 0¥ pley v pl])s 1),
where y1 + 21 < -+ < yp + 2, < 0, p} cuspidal for all ¢ = 1,...,k, and 7/
tempered.
Then p*(5([v=%p, v 2p]) x o) contains
O([v p, v ph]) @ L(O([v*2 po, v p]), - 6([V7* s v 1)) 7).

and the structural formula implies that there are —a —1 <7 < j <a+ 2 and
an irreducible constituent 7 ® o’ of p*(o) such that

5[, 71 ) < 6(1v " p,v%p]) X ([, v +2p]) x
and
L(6(["2 ply, v*2p5)), .., 6([" i, v P ]); 7') < S([" 1 p, v p]) x o

The square-integrability of o gives p} = p, 21 > a, and i € {a+ 1,a + 2}.
If (i,21) = (a +2,a), we get L(6([v=2"2p,v%]); 0).

If i =a+2and 2, # a, we get z3 = a + 1, and [11, Lemma 8.3] gives
k=1 and 7/ 2 7y, so we obtain L(§([v=*"2p, v 1 p]); 1).
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Suppose that i = a + 1. Then z; = a and
L(8([v"2 ply, v*2 p]), ., 8([1¥% ple, v* ph]); 7') < 07 H2p o0

Lemma 4.2 implies that either (k,7") = (1,72) or (k,ya,22,p5) = (2,—a —
2,—a — 2,p). Using yo + 20 > y1 + 21 = —1 we get (k,7) = (1, 72) which
gives 6([v~2"1p,v%]) @ T2. Consequently, we have obtained all irreducible
subquotients of §([v=%p, v**2p]) x 0.

Using the structural formula, together with Lemma 3.1, one can easily de-
duce that §([v=272p, v**p]) @71 appears with multiplicity one in p*(§([v=%p,
v 2p]) x o). Also, using structural formula and Lemma 3.2 we obtain that
§([v=21p,v%p]) @72 appears with multiplicity one in p* (6([v=%p, v 2p]) x0).
Thus, 6([v~%p, v22p]) xo is the multiplicity one representation and the propo-
sition is proved. |

Proofs of the following three propositions follow in a similar way as in the
previously considered case, and are being left to the reader.

PROPOSITION 4.4. Suppose that 2a + 1 ¢ Jord,(0), 2a + 3,2a + 5 €
Jord, (o).

(1) Suppose that e,((2a+3, p), (2a+5, p)) = 1. Let T denote an irreducible
tempered subrepresentation of §([v=%p, v 2p]) x o, let 71 denote an
irreducible tempered representation such that o is a subrepresentation
of v p % 11, and let 5 denote a unique irreducible tempered subrep-
resentation of v® 1 2p x o. All irreducible non-tempered subquotients of
S([v=%p,v**2p]) x o are

L(S([v=2p,vp));0), L™ 2 p, v pl)im), L™ p, v p]); 7).

(2) Suppose that €,((2a + 3, p),(2a + 5,p)) = —1. Let 71 denote an irre-
ducible tempered representation such that o is a subrepresentation of
votlp s 1. All irreducible non-tempered subgquotients of the induced
representation §([v=%p, v+ 2p]) x o are

L(3([v=*2p,v"p]);0), L(([v "2 p, v " p])s 7).

In both cases, all irreducible non-tempered subquotients appear with in the
composition series multiplicity one.

PROPOSITION 4.5. Suppose that 2a + 1,2a + 3 € Jord,(c) and 2a+ 5 ¢
Jord, (o).

(1) Suppose that €,((2a + 1,p), (2a + 3,p)) = 1. Let 7 denote an irre-
ducible tempered subrepresentation of 6([v"%p, v 2p]) x o, let 7y de-
note an irreducible tempered representation such that o is a subrep-
resentation of v*T1p x 11, and let 7o denote an irreducible tempered
subrepresentation of v*t2p x 0. All irreducible non-tempered subquo-
tients of 6([v=%p, v 2p]) x o are

L([v=2p,vp]);0), LOO([v ™2 p, v p])s 1), LS ([ o, 0% p])s 7).
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(2) Suppose that e, ((2a + 1,p),(2a + 3,p)) = —1. Let 7o denote a unique
irreducible tempered subrepresentation of v*t2p x o. All irreducible
non-tempered subquotients of §([v=%p, v 2p]) x o are

L6(v=*2p,vp));0), L(O([v™ """ p, v*p]); 72).

In both cases, all irreducible non-tempered subquotients appear in the compo-
sition series with multiplicity one.

PROPOSITION 4.6. Suppose that 2a + 1,2a + 3,2a + 5 € Jord,(0), and
that §([v=%p, v 2p]) x o reduces.

(1) Suppose that e,((2a+1,p), (2a+3, p)) = €x((2a+3, p), (2a+5,p)) = 1.
Let 7 denote an irreducible tempered subrepresentation of the induced
representation §([v=%p, v 2p]) x o, let 71 denote an irreducible tem-
pered representation such that o is a subrepresentation of v*T1p x Ty,
and let 15 denote a unique irreducible tempered subrepresentation of
v22p x o. All irreducible non-tempered subquotients of

S([vp, v Pp) o
L[ 2p,vp));0), L(6([v =2 p, v p))sm), L(S([v ™ p, vp)); m2).

(2) Suppose that €;((2a +1,p), (2a+3,p)) = 1 and e,((2a + 3, p), (2a +
5,p)) = —1. Let 7y stand for an irreducible tempered representation
such that o is a subrepresentation of v*T1p x 1. All irreducible non-
tempered subquotients of 6([v=p, v 2p]) x o are

L(([v=2p,v"p]);0), L(3([v™ "2 p, v** p])s 7).

(3) Suppose that e,((2a + 1, p), (2a + 3,p)) = —1 and €,((2a + 3, p), (2a +
5,p)) = 1. Let 7o stand for a unique irreducible tempered subrepre-
sentation of v*2p x o. All irreducible non-tempered subquotients of
S([v=%p,v**2p]) x o are

L(6(v="2p,v*p)); 0), L6 ([v ™" p, v*p]); 72).

In each case, all irreducible non-tempered subquotients appear in the compo-
sition series with multiplicity one.

To handle the remaining case, we need one technical result.

LEMMA 4.7. Letx,y € %Z such that 0 < x < y—2. Let 045 € R(G) stand
for a discrete series such that 2x+1 ¢ Jord,(04s), 2y—1,2y+1 € Jord,(o4s)
and €5, ((2y—1,p), 2y+1,p)) = 1. If T is an irreducible subrepresentation of
S([v="p,v*p]) X 045, then VYp x 7 has a unique irreducible tempered subrepre-
sentation, which contains an irreducible constituent of the form vYp x VYp®m
in the Jacquet module with respect to the appropriate parabolic subgroup.
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PRrROOF. In R(G) we have §([v"p,v*p]) X 045 = 7+ 7', where 7 and 7/
are mutually non-isomorphic irreducible tempered subrepresentations.

By Lemma 4.2, there is an irreducible tempered subrepresentation (1) of
Wpxogs. In R(G) we have §([v="p,v%p]) x 701 = 11 +7_1, where 71 and 7_,
are mutually non-isomorphic irreducible tempered subrepresentations. Thus,
for i € {1,—1} we have the following embedding and isomorphism:

7= 0([p, vTp]) X Vp X ogs ZvVp X ([T p, v7p]) X 04s.

So, for i € {1,—1} there is m; € {7,7'} such that 7; is a subrepresentation
of v¥p x m;. Since §([v~p,v"p]) ® 045 is a unique irreducible constituent
of the form &([v~"p,v"p]) ® 7 appearing in p*(m;), and appears there with
multiplicity one, using the structural formula and Lemma 4.2 we obtain that
S(lv=*p,v%p]) @ 7 appears in p*(v¥p x 7;) with multiplicity one. Con-
sequently, w1 2 7_; and there is an ¢ € {1,—1} such that 7; is a unique
irreducible subrepresentation of v¥p x 7.

Also, from €,, ((2y — 1,p),(2y + 1,p)) = 1 we deduce that there is an
irreducible tempered representation 72 such that o4 is a subrepresentation
of v¥p x 7). This leads to an embedding

i = o x W x 6([vp,v%p]) x 7,

for i € {1,—1}. Consequently, p*(7;) contains an irreducible constituent of
the form vYp x VWp @, for i € {1,—1}. O

ProrosITION 4.8. Let a,b € %Z such that a < b — 3, and such that
§([v=2p,Pp]) x o reduces. Suppose that for r = a+1,a+2,...,b—1 we have
2z 41 € Jord,(0), and fory =a+2,...,b—1 we have e,((2y — 1, p), (2y +
17p)) =-1

(1) Suppose that either 2a+1 ¢ Jord, (o) or2a+1 € Jord,(o) and e,((2a+
1,p),(2a+3,p)) =1, and either 2b+1 ¢ Jord,(o) or 2b+1 € Jord,(o)
and e5((2b—1, p), (2041, p)) = 1. Let 7 denote an irreducible tempered
representation such that o is a subrepresentation of v*tlp x 1, T3
denote a unique irreducible tempered subrepresentation of VPpx o, and
74 denote a unique irreducible tempered subrepresentation of vPp x 1.
All irreducible non-tempered subquotients of 5([v=p,vbp]) x o are

L(3([v="p, v p]);0), L(O([v =" p, v p])i 1),
L(3([v="" p,v%p]); 1), LO(v ™" o, v pl)s 7).
(2) Suppose that either 2a + 1 ¢ Jord,(c) or 2a + 1 € Jord,(o) and
e((2a+1,p),(2a+3,p)) =1, and 2b+ 1 € Jord,(o), with €,((2b —
1,p),(2b+1,p)) = —1. Let 71 denote an irreducible tempered represen-

tation such that o is a subrepresentation of v*T1p x 1. All irreducible
non-tempered subquotients of 6([v=%p,°p]) x o are

L([v~p,v*p));0), L(6([v~"p, v p])s 7).
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(3) Suppose that 2a + 1 € Jord, (o), with €,((2a + 1,p),(2a + 3,p)) =
—1, and either 2b + 1 ¢ Jord,(c) or 2b + 1 € Jord,(o) and e,((2b —
1,p),(2b+ 1,p)) = 1. Let 73 denote a unique irreducible tempered
subrepresentation of v’ pxo. All irreducible non-tempered subquotients
of 6([v=%p, vbp]) x & are

L(6([v"p,v*p)); ), L(S([v ™" p, v p]); 73).

In each case, all the irreducible non-tempered subquotients appear with multi-
plicity one in the composition series.

PROOF. Let us comment only the representation L(&([v =" 1p, v2 1 p]); 74)
appearing as an irreducible subquotient in (1), other parts of the proposi-
tion follow directly from the proofs of [8, Lemmas 3.2., 3.4]. If 2a + 1 ¢
Jord, (o), a tempered representation 74 is constructed in Lemma 4.2, and if
2a+1 € Jord,(0) and €,((2a+1, p), (2a+3, p)) = 1, then 74 is constructed in
Lemma 4.7. Note that p*(L(6([v="'p, v*F1p]);74)) contains an irreducible
constituent of the form v%*1p @ .

We have the following embeddings and an isomorphism:

L[ p, v pl)ima) = 6([v =" p, v p]) 37y
= 3([v "o, v p]) x VPp Ty

= Pp x §([v™ " p, v o)) 3,

Thus, the Frobenius reciprocity implies that p* (L(§([v ="+ p, v21p]); 74)) con-
tains an irreducible constituent of the form v%p ® 7.
From

L(S([v="* p, v pl)ima) < 8([v™" " p, "7 p]) 3y

<5 o, ) x VP am,

follows that there is an irreducible subquotient 7 of 6([v=2"1p, v~ 1p]) x v¥p
such that L(6([v=" 1 p, v 1p]);74) is an irreducible subquotient of 71 x 7.
If u*(71) does not contain an irreducible constituent of the form 1v°p ® T, it
follows at once that the Jacquet module of 7; with respect to the appropriate
parabolic subgroup contains an irreducible constituent of such a form, so
7 2 §([v=* Lp,vPp]). If p*(1) contains an irreducible constituent of the
form v’p@m, it follows that e, ((2b—1, p), (2b+1, p)) = 1, and in the same way
as before we obtain that p*(L(6([v="1p,v**1p]); 74)) contains an irreducible
constituent of the form v°p x 1¥p ® 7. Definition of 7, implies that u*(;)
does not contain an irreducible constituent of the form v°p x v’p ® m, so
again the Jacquet module of 7m; with respect to the appropriate parabolic
subgroup has to contain an irreducible constituent of the form v%p ® m, so
m =3[ p, v0p)).
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Thus, we have
L(S(v™" p, v pl)ima) < 6™ p,vPpl) m < 6([v % p, w0 p]) x v pxiry,
so there is an irreducible subquotient 7 of 2%t 1p x 7 such that L(5([v=0 1p,
v 1p]); 74) is contained in 6([v=%p, v0p]) X .

Since p*(L(6([v="*'p, v¥*+1p]);74)) contains an irreducible constituent
of the form v*T!p ® 7, using the structural formula we obtain that p*(ms)

contains an irreducible constituent of such a form, and using Lemma 4.2 we
deduce m = 0. 0

5. ENDS OF THE FIRST COMPLEMENTARY SERIES IN THE POSITIVE CASE

Let us first recall the irreducibility criterion in the case %, given in [8,
Theorem 4.6.]:

THEOREM 5.1. Suppose that % <b,b—- % s a non-negative integer, and
for a such that v*p X 0cysp Teduces we have o — % € Z. The induced rep-
resentation 8([v2 p,vbp)) x o is irreducible if and only if 2b+ 1 € Jord, (o),
e(min(Jord,(0)), p) = —1, and for every x € Jord,(c)N[min(Jord, (o)), 2b+1]
such that z_ is defined we have €((z_, p), (z,p)) = —1.

Further, let us recall the irreducibility criterion in the remaining case,
given in [8, Theorem 5.4.]:

THEOREM 5.2. Suppose that 1 < a < b and for a such that v*p X 0cysp
reduces we have a — a € Z. The induced representation §([v%p,v°p]) x o is
irreducible if and only if one of the following holds:

(1) [2a —1,2b+ 1] N Jord,(o) = 0.
(2) 2b+ 1 € Jord,(0) and for every x € [2a + 1,2b+ 1] N Jord,(o) such
that x_ is defined and x_ > 2a — 1 we have €((z_, p), (z,p)) = —1.

The following result can be proved in the same way as Lemma 4.2, using
[8, Lemma 4.2] and the proof of [8, Lemma 4.4].

PROPOSITION 5.3. Suppose that Jord,(o) consists of even integers. Then
I/%pN o is irreducible if and only if 2 € Jord, (o) and €,(2, p) = —1. [fl/%le o
reduces, in R(G) we have

vipxo =L 3po)+T,
where T is an irreducible tempered representation, which is a discrete series

representation if and only if 2 ¢ Jord,(o).

Now we state a result which can be obtained in the same way as the ones
from previous section, using the proof of [8, Lemma 4.4].

PROPOSITION 5.4. Suppose that 2 € Jord,(c) and 4 ¢ Jord,(o). Let o
denote a unique discrete series subrepresentation of l/%p X 0.
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(1) Suppose that €5(2,p) = 1. Let o4s stand for a unique discrete series
subrepresentation of ([v2p,v3 p]) x o, and let 0@ stand for a discrete
series such that o is a subrepresentation of l/%p x 0@ . All irreducible
non-tempered subquotients of §([V2p,v2p]) x o are

L(6([v=2p,v " 2p));0), L™ 2 p; 0 ™M), L(8([v 2 p,v2 p]);02).

(2) Suppose that €5(2,p) = —1. All irreducible non-tempered subquotients
of 6([vzp,v3p)) x o are

LG([v"2p,v2p]);0), Ly~ 2p;0W).

In both cases, all the irreducible non-tempered subquotients appear in the com-
position series with multiplicity one.

Proof of the following proposition is left to the reader.

PROPOSITION 5.5. Suppose that 2,4 € Jord,(c), and that §([v= p, v pl) x
o reduces.

(1) Suppose that €,(2,p) = 1 and €,((2,p),(4,p)) = 1. Let 7 denote a
unique irreducible tempered subrepresentation of 5([V%p, V%p]) X o,
let o) denote a discrete series such that o is a subrepresentation of
V%p x 0 and let 5 stand for a unique irreducible tempered subrep-
resentation of l/%p X o. All irreducible non-tempered subquotients of
§([vzp,v3p]) x o are

LE([v=2 p,v 2 pl)s 0), LE([ 2 p, 02 p]); 0 ), L2 i 75),
(2) Suppose that €,(2,p) = 1 and e,((2,p), (4,p)) = —1. Let 0® denote

a discrete series such that o is a subrepresentation of l/%p x o, All
irreducible non-tempered subquotients of §([v2p,v3 p]) x o are

L(O([v~2p,v=%p]);0), L(8([v "2 p, w2 p]);0).

(3) Suppose that €,(2,p) = —1 and €,((2,p),(4,p)) = 1. Let 75 stand
for a unique irreducible tempered subrepresentation of l/%p x o. All
irreducible non-tempered subquotients of §([v2p,v3 p]) x o are

L(3([v=2 p,v™ 2 p)); 0), L(v™ 2 pi75).

In each case, all the irreducible non-tempered subquotients appear in the com-
position series with multiplicity one.

PROPOSITION 5.6. Let b € %Z, b > %, be such that b — % is an integer.
Suppose that {2,4,...,2b—1} C Jord,(o) and that for x = 4,6,...,2b—1 we
have e,((z — 2, p), (z, p)) = —1. Suppose that §([v= p,v*p]) x o reduces.
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(1)

Suppose that €,(2,p) =1, 2b+ 1 € Jord,(0o) and €,((2b — 1, p), (2b +
1,p)) = —1. Let 0® denote a discrete series such that o is a subrep-
resentation of V%p x o). All irreducible non-tempered subquotients of
§([vzp,vbp)) x o are

L@([v~"p, v 2 pl)s0), L(3([v "0, v7 pl); o).
Suppose that €,(2,p) = 1, and either 2b+ 1 ¢ Jord,(o) or 2b+1 €
Jord,(c) and €,((2b—1,p), (2b+1,p)) = 1. Let 0?) denote a discrete
series such that o is a subrepresentation of u%p x o) let T3 denote
a unique irreducible tempered subrepresentation of vPp x o, and let ¢
denote a unique irreducible tempered subrepresentation of v°p x o).
All irreducible non-tempered subquotients of §([v2 p,v?p]) x o are

L3([v™p, v 2p)); 0), L(S([v " p, v2 p)); 0@,
L[ p, v % p]); m3), L(8([v ™" p, 2 p))s 7).

Suppose that €,(2,p) = —1, and either 2b+ 1 ¢ Jord,(c) or 2b+1 €
Jord,(o) and €,((2b — 1,p),(2b + 1,p)) = 1. Let 13 denote a unique
irreducible tempered subrepresentation of v°p x o. All irreducible non-
tempered subquotients of 8([v2 p,vPp]) x o are

L[ p,v™2p));0), LS([v ™" p, v p))s 73).

In each case, all the irreducible non-tempered subquotients appear in the com-
position series with multiplicity one.

PROOF. Let us only discuss the subquotient L(§([v~"p, v2p]); 76) in
the case when €,(2, p) = 1, and either 20+ 1 ¢ Jord, (o) or 2b+ 1 € Jord, (o)
and €,((2b — 1,p),(2b + 1, p)) = 1. Other parts of the proof can be deduced
in the same way as before, using the proofs of [8, Lemmas 4.4, 4.5.].

Note that p*(L(8([v=0 1 p, 2 p]); 76)) contains irreducible constituents of
the form vz p ® m and of the form v°p ® 7y, since 7 is a subrepresenta-
tion of vtp x ¢@ . Also, p*(L(6([v~ 1p,v2p]); 76)) contains an irreducible
constituent of the form 1°p x v¥p ® 7 if and only if 2b + 1 € Jord,(o) and
e-((2b—1,p),(2b+ 1,p)) = 1. From

L([v™"* p,v7p))s76) < 6([v™2p, " pl) xme < S([v 2 p, vt pl) x 1 pxa ),

in the same way as in the proof of Proposition 4.8 we get

Thus,

LO([v " p,v2pl)s76) < 0™ 2p,0%p)) 0 0.

LG (" p,v2p))i76) < 0([v2 p,v0p]) x 2 p 30,

so there is an irreducible subquotient 7 of 2 p x 0@ such that L(5([v—1p,
v2p)); 76) is contained in 8([v2 p,Pp]) % 7. Since p* (L(§([v=p, v p]); 7))
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contains an irreducible constituent of the form v2 p ® w1, using Proposition
5.3 we obtain ™ = ¢. 0

Remaining case is covered by the following proposition, which can be
proved following the same lines as in the previously considered cases, using
proofs of [8, Lemmas 5.2., 5.3].

PROPOSITION 5.7. Let a,b € %Z such thatb—a € Z and 1 <a <b-—1.
Suppose that for v = a —1,a,...,b—1 we have 2z + 1 € Jord, (o), and that
fory =a,...,b—1 we have ¢,((2y — 1,p), (2y + 1,p)) = —1. Suppose that
§([v%p,v°p]) x o reduces, and let T3 stand for a unique irreducible tempered
subrepresentation of vPp x o. All irreducible non-tempered subquotients of
§([vep,vbp]) x o are

LO(v~p,v™p]);0), L(8([v =" p, v %p]); 73),

both appearing in the composition series with multiplicity one.
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Krajevi prvih komplementarnih serija generaliziranih osnovnih
serija

Darija Bragkovic Zorié i Tvan Matié¢

SAZETAK. U radu éemo odrediti sve ireducibilne netemperi-
rane kompozicione faktore induciranih reprezentacija koje se po-
javljuju u krajevima prvih komplementarnih serija generaliziranih
osnovnih serija simplekticke, specijalne neparno ortogonalne ili
unitarne grupe nad nearhimedskim lokalnim poljem.
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