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AN EMBEDDING OF THE CANTOR FAN INTO THE
LELEK FAN

Iztok Banič, Goran Erceg and Judy Kennedy

Abstract. The Lelek fan L is usually constructed as a subcontinuum

of the Cantor fan in such a way that the set of the end-points of L is dense
in L. It easily follows that the Lelek fan is embeddable into the Cantor

fan. It is also a well-known fact that the Cantor fan is embeddable into

the Lelek fan, but this is less obvious. When proving this, one usually
uses the well-known result by Dijkstra and van Mill that the Cantor set

is embeddable into the complete Erdös space, and the well-known fact
by Kawamura, Oversteegen, and Tymchatyn that the set of end-points of

the Lelek fan is homeomorphic to the complete Erdös space. Then, the

subcontinuum of the Lelek fan that is induced by the embedded Cantor
set into the set of end-points of the Lelek fan, is a Cantor fan.

In our paper, we give an alternative straightforward embedding of a

Cantor fan into the Lelek fan. We do not use the fact that the Cantor set is
embeddable into the complete Erdös space and that it is homeomorphic to

the set of end-points of the Lelek fan. Instead, we use our recent techniques

of Mahavier products of closed relations to produce an embedding of the
Cantor fan into the Lelek fan. Since the Cantor fan is universal for the

family of all smooth fans, it follows that also the Lelek fan is universal for

smooth fans.

1. Introduction

A continuum is a non-empty compact connected metric space. A subcon-
tinuum is a subspace of a continuum, which is itself a continuum. Let X be
a continuum. We say that X is a Cantor fan, if X is homeomorphic to the
continuum

⋃
c∈C Ac, where C ⊆ [0, 1] is a Cantor set and for each c ∈ C, Ac

is the convex segment in the plane from (0, 0) to (c,−1); see Figure 1. Let
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Figure 1. The Cantor fan

X be a Cantor fan and let Y be a subcontinuum of X. A point x ∈ Y is
called an end-point of the continuum Y , if for every arc A in Y that contains
x, x is an end-point of A. The set of all end-points of Y will be denoted
by E(Y ). We say that the subcontinuum Y of the Cantor fan X is a Lelek
fan, if Cl(E(Y )) = Y . The first example of a Lelek fan was constructed by

Figure 2. The Lelek fan

A. Lelek in [13]. He proved that the set of end-points of the Lelek fan is
a one-dimensional set in the Lelek fan. The Lelek fan is also unique: any
two non-degenerate subcontinua of the Cantor fan with a dense set of end-
points are homeomorphic. This was proved independently by W. D. Bula and
L. Oversteegen in [8] and by W. Charatonik in [10]. After the Lelek construc-
tion, there were many other constructions of the Lelek fan. For example, in
2013, D. Bartosova and A. Kwiatkowska constructed in [5] the Lelek fan as a
quotient space of the projective Fraisse limit of a family that consists of finite
rooted trees. In [2], the Lelek fan is constructed by I. Banič, G. Erceg and J.
Kennedy as the inverse limit of inverse sequence of closed unit intervals with
a single set-valued bonding function whose graph is an arc, and in [1], the
Lelek fan is constructed by I. Banič, G. Erceg, J. Kennedy, C. Mouron and
V. Nall as the inverse limit of an inverse sequence of Cantor fans and a single
transitive continuous bonding function.
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It easily follows from Lelek’s construction that the Lelek fan is embeddable
into the Cantor fan. However, it is not that obvious that the Cantor fan is
embeddable into the Lelek fan. One can easily construct an embedding of the
Cantor fan into the Lelek fan by using

1. the well-known result from [7] by J. J. Dijkstra and J. Mill that a space
is almost zero-dimensional (a space is called almost zero-dimensional if
every point of the space has a neighbourhood basis consisting of C-sets
of the space, where a subset A of a space X is called a C-set in X if
A can be written as an intersection of clopen subsets of X; see [7] for
more details) if and only if it is embeddable into the complete Erdös
space, and

2. the well-known result from [11] by K. Kawamura, L. G. Oversteegen,
and E. D. Tymchatyn that the set of end-points of the Lelek fan is
homeomorphic to the complete Erdös space.

First, embed the Cantor set into the set of end-points of the Lelek fan and
then, the subcontinuum of the Lelek fan that is induced by the embedded
Cantor set, is a Cantor fan (among other things, this was already noted by
G. Basso and R. Camerlo in [4], where another similar result is obtained).

In this paper, we give an alternative straightforward construction of a
Cantor fan into the Lelek fan. In our approach, we do not use the well-known
results from [7] or [11]. Instead, we use our recently developed techniques of
Mahavier products of closed relations from [1], [2], and [3]. We proceed as
follows. In Section 2, the basic definitions and results that are needed later
in the paper are presented. In Section 3, our main result is proved.

2. Definitions and Notation

The following definitions, notation and well-known results will be needed
in the paper.

Definition 2.1. Let X be a non-empty compact metric space and let
F ⊆ X ×X be a relation on X. If F is closed in X ×X, then we say that F
is a closed relation on X.

Definition 2.2. Let X be a non-empty compact metric space and let F
be a closed relation on X. Then we call

X+
F =

{
(x0, x1, x2, . . .) ∈

∞∏
k=0

X | for each non-negative integer k, (xk, xk+1) ∈ F
}

the Mahavier product of F .

Definition 2.3. For each (r, ρ) ∈ (0,∞)× (0,∞), we define the sets Lr,
Lρ and Lr,ρ as follows: Lr = {(x, y) ∈ [0, 1]× [0, 1] | y = rx}, Lρ = {(x, y) ∈
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[0, 1] × [0, 1] | y = ρx}, and Lr,ρ = Lr ∪ Lρ. We also define the set Mr,ρ as
follows:

Mr,ρ= [0, 1]+Lr,ρ
.

Definition 2.4. Let (r, ρ) ∈ (0,∞)× (0,∞). We say that r and ρ never
connect or (r, ρ) ∈ NC, if

1. r < 1, ρ > 1 and
2. for all integers k and ℓ,

rk = ρℓ ⇐⇒ k = ℓ = 0.

In [2] , the following theorem is the main result; see [2, Theorem 14,
page 21].

Theorem 2.5. Let (r, ρ) ∈ NC. Then Mr,ρ is a Lelek fan with top
(0, 0, 0, . . .).

In Theorem 2.7, a characterization of end-points of Mr,ρ is established;
see [3, Theorem 3.5, page 8].

Definition 2.6. For each non-negative integer k, we use πk :
∏∞

i=0[0, 1] →
[0, 1] to denote the k-th standard projection from

∏∞
i=0[0, 1] to [0, 1]. For any

non-negative integer k and for any x ∈
∏∞

i=0[0, 1], we also use x(k) to denote
πk(x).

Theorem 2.7. Let (r, ρ) ∈ NC and let x ∈ Mr,ρ. Then x ∈ E(Mr,ρ) if
and only if sup{πn(x) | n is a non-negative integer} = 1.

The following theorem is also proved in [2, Theorem 9, page 18].

Theorem 2.8. Let (r, ρ) ∈ NC. Then for each x ∈ (0, 1), there is a
sequence a ∈ {r, ρ}N such that for each positive integer n,

(a1 · a2 · a3 · . . . · an) · x ∈ [0, 1]

and

sup{(a1 · a2 · a3 · . . . · an) · x | n is a positive integer} = 1.

3. An embedding of the Cantor fan into the Lelek fan

We show, using our recent techniques from [2] and [3], that the Cantor
fan can be embedded into the Lelek fan.

Theorem 3.1. The Cantor fan is embeddable into the Lelek fan.

Proof. Let X = [0, 1], let (r, ρ) ∈ NC and let

F = Lr,ρ ∪ {(t, t) | t ∈ [0, 1]} and G = Lr ∪ {(t, t) | t ∈ [0, 1]}.
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It follows from [2, Example 1, page 7] that X+
G is a Cantor fan. Since X+

G ⊆
X+

F , it suffices to see that X+
F is a Lelek fan. To do that, let

Ba = {(t,a(1) · t,a(2)a(1) · t,a(3)a(2)a(1) · t, . . .) | t ∈ [0, 1]}

and

Aa = Ba ∩X+
F

for each a = (a(1),a(2),a(3), . . .)) ∈ {1, r, ρ}N. Note that for each a ∈
{1, r, ρ}N, Ba is a straight line segment in Hilbert cube

∏∞
k=1[0, ρ

k−1] from
(0, 0, 0, . . .) to (1,a(1) · 1,a(2)a(1) · 1,a(3)a(2)a(1) · 1, . . .), and that for all
a,b ∈ {1, r, ρ}N,

Ba ∩Bb = {(0, 0, 0, . . .)} ⇐⇒ a ̸= b.

Since {(1,a(1) ·1,a(2)a(1) ·1,a(3)a(2)a(1) ·1, . . .) | a ∈ {1, r, ρ}N} is a Cantor
set, it follows that

⋃
a∈{1,r,ρ}N Ba is a Cantor fan. Therefore, X+

F is a subcon-

tinuum of the Cantor fan
⋃

a∈{1,r,ρ}N Ba. Note that for each a ∈ {1, r, ρ}N,
Aa is either degenerate or it is an arc from (0, 0, 0, . . .) to some other point,
denote it by ea. Let

U = {a ∈ {1, r, ρ}N | Aa is an arc}.

Then

X+
F =

⋃
a∈U

Aa and E(X+
F ) = {ea | a ∈ U}.

Next, we show that for each x ∈ X+
F ,

x ∈ E(X+
F ) ⇐⇒ sup{x(k) | k is a non-negative integer} = 1.

Let x ∈ X+
F . We treat the following possible cases.

Case 1. For each non-negative integer k, there is a positive integer ℓ such that
ℓ > k and x(k) ̸= x(ℓ). Without loss of generality we may assume that
x ∈ Mr,ρ. First, suppose that x ∈ E(X+

F ). Then x ∈ E(Mr,ρ) and
by Theorem 2.7, sup{x(k) | k is a non-negative integer} = 1. Next,
suppose that sup{x(k) | k is a non-negative integer} = 1. Since x ∈
Mr,ρ, it follows from Theorem 2.7 that x ∈ E(Mr,ρ). Since E(Mr,ρ) ⊆
E(X+

F ), it follows that x ∈ E(X+
F ).

Case 2. There is a non-negative integer k such that for each non-negative in-
teger ℓ ≥ k, x(ℓ) = x(k). In this case,

sup{x(k) | k is a non-negative integer} = max{x(k) | k is a non-negative integer}.

Let x ∈ E(X+
F ) and suppose that sup{x(k) | k is a non-negative integer} =

m < 1. Also, let k0 be a non-negative integer such that x(k0) = m
and let a ∈ {1, r, ρ}N be such that

x = (x(0),a(1) · x(0),a(2)a(1) · x(0),a(3)a(2)a(1) · x(0), . . .).



6 I. BANIČ, G. ERCEG AND J. KENNEDY

Then

x ∈
{( 1

a(1) · a(2) · a(3) · . . . · a(k0 − 1)
· t, . . . , 1

a(k0 − 2) · a(k0 − 1)
· t, 1

a(k0 − 1)
· t,

t,a(k0) · t,a(k0 + 1)a(k0) · t,a(k0 + 2)a(k0 + 1)a(k0) · t, . . .
)
| t ∈ [0,m]

}
,

which is a proper subset of the arc{( 1

a(1) · a(2) · a(3) · . . . · a(k0 − 1)
· t, . . . , 1

a(k0 − 2) · a(k0 − 1)
· t, 1

a(k0 − 1)
· t,

t,a(k0) · t,a(k0 + 1)a(k0) · t,a(k0 + 2)a(k0 + 1)a(k0) · t, . . .
)
| t ∈ [0, 1]

}
in X+

F and is, therefore, not an endpoint of X+
F . It follows that the

supremum sup{x(k) | k is a non-negative integer} equals 1. To prove
the other implication, suppose that sup{x(k) | k is a non-negative integer} =
1. Then x is the end-point of the arc{( 1

a(1) · a(2) · a(3) · . . . · a(k0 − 1)
· t, . . . , 1

a(k0 − 2) · a(k0 − 1)
· t, 1

a(k0 − 1)
· t,

t,a(k0) · t,a(k0 + 1)a(k0) · t,a(k0 + 2)a(k0 + 1)a(k0) · t, . . .
)
| t ∈ [0, 1]

}
in X+

F , which is not equal to (0, 0, 0, . . .). Therefore, it is an end-point

of X+
F .

Therefore, x ∈ E(X+
F ) ⇐⇒ sup{x(k) | k is a non-negative integer} = 1

follows.
To see that X+

F is a Lelek fan, let x ∈ X+
F be any point and let ε > 0. We

prove that there is a point e ∈ E(X+
F ) such that e ∈ B(x, ε) by considering

the following possible cases.

Case 1. For each non-negative integer k, there is a positive integer ℓ such that
ℓ > k and x(k) ̸= x(ℓ). Again, without loss of generality we assume
that x ∈ Mr,ρ \ {(0, 0, 0, . . .)}. Then x(n) ̸= 0 for each positive integer
n. For each positive integer n, by Theorem 2.8, there is a sequence
an = (an1 , a

n
2 , a

n
3 , . . .) ∈ {r, ρ}N such that for each positive integer k,

an1 · an2 · an3 · . . . · ank · x(n) ∈ [0, 1]

and

sup{an1 · an2 · an3 · . . . · ank · x(n) | k is a positive integer} = 1.

For each positive integer n, choose such a sequence an and let

xn = (x(1),x(2),x(3), . . . ,x(n), an1 · x(n), an1 · an2 · x(n), an1 · an2 · an3 · x(n), . . .).
By Theorem 2.7, xn ∈ E(Mr,ρ) for each positive integer n. It follows
from E(Mr,ρ) ⊆ E(X+

F ) that for each positive integer n, xn ∈ E(X+
F ).

Since lim
n→∞

xn = x, it follows that there is a point e ∈ E(X+
F ) such

that e ∈ B(x, ε).
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Case 2. There is a non-negative integer k such that for each non-negative in-
teger ℓ ≥ k, x(ℓ) = x(k). Without loss of generality, we assume that
x ̸= (0, 0, 0, . . .). Let k0 be a positive integer such that

∑∞
k=k0

1
2k

< ε

and such that for each positive integer k ≥ k0, x(k) = x(k0). It follows
from Theorem 2.8 that there is a sequence (a1, a2, a3, . . .) ∈ {r, ρ}N
such that

sup{(a1 · a2 · a3 · . . . · an) · x(k0) | n is a positive integer} = 1.

Choose and fix such a sequence (a1, a2, a3, . . .). Let

e = (x(0),x(1),x(2), . . . ,x(k0), a1 · x(k0), a2a1 · x(k0), a3a2a1 · x(k0), . . .).

Then e ∈ E(X+
F ) and

D(e,x) ≤
∞∑

k=k0

1

2k
< ε,

where D is the metric on X+
F .

This proves that X+
F is a Lelek fan.

Observation 3.2. It is a well-known fact that the Cantor fan is universal
for smooth fans, i.e., every smooth fan embeds into it (for details see [9,
Theorem 9, p. 27], [12, Corollary 4], and [6]). Since the Lelek fan contains
a Cantor fan, it follows also that the Lelek fan is a universal continuum for
smooth fans.
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Ulaganje Cantorove lepeze u Lelekovu lepezu

Iztok Banič, Goran Erceg i Judy Kennedy

Sažetak. Lelekova lepeza L obično se konstruira kao potkon-
tinuum Cantorove lepeze na način da je skup krajnjih točaka od L
gust u L. Lako slijedi da je Lelekova lepeza uloživa u Cantorovu
lepezu. Takodjer je dobro poznata činjenica da se Cantorova lep-
eza može uložiti u Lelekovu lepezu, ali to je manje očito. U dokazu
te tvrdnje, obično se koristi dobro poznati rezultat Dijkstre i van
Milla da je Cantorov skup uloživ u potpuni Erdösev prostor, te do-
bro poznata činjenica Kawamure, Oversteegena i Tymchatyna da
je skup krajnjih točaka Lelekove lepeze homeomorfan potpunom
Erdösevom prostoru. Zatim, potkontinuum Lelekove lepeze koji
je induciran uloženim Cantorovim skupom u skup krajnjih točaka
Lelekove lepeze je Cantorova lepeza.

U našem radu dajemo alternativnu konstrukciju ulaganja Can-

torove lepeze u Lelekovu lepezu. Ne koristimo se činjenicom da

je Cantorov skup moguće uložiti u potpun Erdösev prostor i da

je homeomorfan skupu krajnjih točaka Lelekove lepeze. Um-

jesto toga, koristimo naše nedavne tehnike Mahavierovih pro-

dukta zatvorenih relacija za ulaganje Cantorove lepeze u Lelekovu

lepezu. Budući da je Cantorova lepeza univerzalna za klasu svih

glatkih lepeza, slijedi da je i Lelekova lepeza univerzalna za glatke

lepeze.



AN EMBEDDING OF THE CANTOR FAN INTO THE LELEK FAN 9

Iztok Banič
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