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SPECTRAL EXPANSION FOR IMPULSIVE DYNAMIC
DIRAC SYSTEM ON THE WHOLE LINE

BILENDER P. ALLAHVERDIEV, HUSEYIN TUNA AND HAMLET A. [SAYEV

ABSTRACT. In this study, we consider a impulsive dynamic Dirac
system on the whole line. A spectral function of this system is constructed.
We establish a Parseval equality and expansion formula in terms of the
spectral function.

1. INTRODUCTION

F. V. Atkinson, in his book written in the 1960s [3], states that neither
differential equations nor difference equations alone are sufficient for boundary
value problems, and he mentioned that it would be beneficial to have these
two types of equations in a single theory. Years after this book, in the 1990s,
this wish was fulfilled with the concept of time scale. Differential equations
and difference equations began to be studied under a single roof. The need to
investigate all the problems discussed in the theory of differential equations
on the time scale has arisen. For more detailed information on time scales see
the excellent book by Bohner and Peterson [4].

Impulsive differential equations are one of the important equations in the
theory of differential equations. It is well-known that these equations serve as
basic models to study the dynamics of processes that are subject to sudden
changes in their states. For this reason, it is being studied extensively by
researchers today ([5, 6, 7, 8, 9, 10, 12, 13, 14, 16]).

On the other hand, spectral expansion theorems play a very important
role in solving problems expressed with partial differential equations in math-
ematics and physics. Especially when solving partial differential equations
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with the Fourier method, such theorems are needed. There are many studies
on this subject in the literature (see [1, 2, 3, 5, 11, 15]).

Recently Allahverdiev and Tuna [2] studied the classical Dirac equation
under impulsive conditions on the time scale. They investigated the funda-
mental properties of this type of problem in the finite interval and regular
case.

In this paper, a spectral function for impulsive dynamic Dirac systems on
the interval (—oo,00) is constructed. Later, we establish a Parseval equality
and expansion formula in terms of the spectral function.

2. MAIN RESULTS

We assume that the reader is familiar with the basic facts of time scales
[4]. Let us consider the following impulsive dynamic Dirac system

@ LR GwTa cer
(2.2) 8 (a,\) cos B+ y1 (a,A)sin 8 = 0,
(2.3) y1 (d—) — kayr (d+) = 0,
(2.4) yh (d—) — kayf (d+) = 0,
(2.5) yh (b, A) cosy +y1 (b, \) siny = 0,

where T be a Sturmian time scale, k1, k2, 8,7 € R, v5 (.) =y2(p(.)), —o0 <
a<d<b<oo, I :=[a,d), Iy :=(d,b], ;=1L Ul, ICT, and X is a
complex eigenvalue parameter.

Our basic assumptions throughout the paper are the following:

(Al) Let klkz =a>0.

(A2) p,r : I — R are continuous functions and have finite limits p (d+) , r (d+£).

A similar problem has been investigated in [1] without impulsive condi-
tions. '

Let Hy = L2 (I1)+ LA (I2) be a Hilbert space endowed with the following
inner product

(o, = [ (hw)eAC+a [ (e A

I I
where
_ (G | hu(CN), ¢ceL
h(C) B ( h2 (CaA) ) ’ h1 (<7)\) o { h12(<a)\)7 C € 127
_f ha(GN), (el
maen = { e EEL
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and

_ [ wi(GA) _Jown(GN), ¢el
W(C) B ( w2 ((a)‘) > > (C7)\) B { wl?(c’)‘)7 C S IQa

_ [ wa(GA), (el
w2 (C?A){ wz;(g)\)’ CEI;.

It follows from [2] that there is an orthonormal system {¢,} (n € Z :=
{0,£1,£2,...}) of eigenvectors of (2.1)-(2.5) with corresponding nonzero eigen-
values \,, such that

d 2 b 2 > 2
20 [ Iw©IAcra [ @B AC= 3 ol

which is called the Parseval equality, where w € Hy, a,, = (W, n)H,, 1 € Z.
Denote by

i (6N e ©, cen
e = (JnER) ) ooy ‘{ D). e

(1)
_ 12 (Q), Cel3
¢12(C,A)—{ D), cen,

(where I3 := (—o00,d) C T, I4 := (d,00) C T) and
(1)

w2<<,x>=(¢ﬂ<“)),w21<<,A>={ 5 (), ek
21

P22 (¢, A) Q) ¢l
(1)
) = 5 (C), (€3
v (G { $ (0. el

the solutions of (2.1) (¢ € I3 U I) which satisfy conditions

e, n) =0, ¢ (e, \) =1, a<c<d.

and impulsive conditions (2.3)-(2.4).
Let A, (n € Z) be the eigenvalues and y,, (n € Z) be the corresponding
eigenfunctions of the self-adjoint problem (2.1)-(2.5), where

Y (Q) 0, cen
yn<<>_<yn2(o),ymc)—{yg)@, (en,

(1)
_ ) Yn2 €), ¢Celh
pr2(0) { y3 (), Ceb.

Since the solutions 7 (¢, A) and 9 (¢, A) of the system (2.1) are linearly
independent, we find

Yn (Q) = unt1 (¢, An) + vnt2 (¢, An), n € Z.
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Without loss of generality, we can assume that |u,| <1 and |v,| <1 (n € Z).
Write

d b
o= [ @I At a [ (Ol A n e 2.

w() = ( 5;8 ) € Hy,

is a real vector-valued function, where

(1) (1)
— Wy (() ) C € Il w o Wy (C)
m(o—{ oD Cen 2<<>—{

By (2.6), we see that

d 2 b 2
/ o (O)]% AC + a / w0 (O)]12 AC
a d
d

Let

b

[ @@ meacta |

a d

o

2
= > 12{ (w(C),yn(C))CzAC}

S 1{ T (@ () s tntfr (€, M) + Vatba (G An)) gz AC }
Fa f7 (@ (€) s unthr (¢ An) + vt (G An))e2 AC

e 2
n

4

n=—oo

JE@ Q)11 (€ An)) e AC }2
+a [ (W (Q) 1 (¢ An))gn AC

d
> a (W (C) 7,(/) (Ca )‘n)) 2 AC
2 Yy { ! 1 ’ }

Fa [P (@ (€)1 (¢ An)) e AC

d b
X {/ (UJ (C) 71/}2 (Ca )\"))C2 AC + a/d (w (C) 7¢2 (Ca )‘n))(CQ AC}

o0 ’UTQl
28  + > ol

b
ta [ (W (C), %2 (¢, An)) ez AC
The step function g5 .6 (4,7 = 1,2) on R is defined by

2
uTL
o Z a2 for A <0
A<An <0
2

1,fas) (A) = 3o

%, for A > 0,

{ fad (w (C) ,¢2 (C7 >‘7l))(c2 AC }2

0<An <A
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_ Z UnVn
aZ for A <0
A<, <0
H12 [a,b (A) =
o0 S otmga o for A>0,
0<An <A

p12,[a,p] (A) = t21,[a,5) (A)

Uy
- Z ) for A <0
pazfa) (V) = Aiﬂl

2
an

s

for A > 0.

0<An <A
From (2.8), we deduce that

d 2 b 2
/ o ()% AC +a / w0 Q)12 AC
a d

(2.9) - / TS 0 () 9 () gty (V)

=1

b

0, () = / @(0) . 1(C. N AC + / (@ (), $1(C \))en AC,

d

and
b

d
Qs () = / (@ (C)92(C \)en AC + /d (@(0),h2(C, \))em AC.

LEMMA 2.1. For any positive &, there is a positive constant A = A (§) not
depending on b such that

3
(2'10) \/ {Mij,[a,b] (/\)} <A (Zv.] =1, 2) :
—£

PRrROOF. By (2.7), we infer that wg) (do, A) = 8,5, where 6;; (4,5 =1,2)

is the Kronecker delta. It is clear that z/JE;) (¢, \) (4, =1,2) are continuous
both with respect to { € [a,d) and A € R. Then for every ¢ > 0 there is a
do < k < d such that

(2.11) P (GN) = b3y

Let
ani= ()

<e, [N\ <&, where ¢ € [do, k] .
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be a nonnegative vector-valued function such that wy; (¢) vanishes outside
the interval [do, k] with

k
(2.12) /do wi1 (Q)AC =1,
and w2 () = 0. Let
k
i () = [ @0 (0) 90 AC

0

k
_ /d wir (O v (¢, V) AC,

0

where ¢ = 1, 2. By virtue of (2.11) and (2.12), we conclude that
(2.13) lwik (A) — 1] < e, w2 (V)] < e, and |A| < &.
It follows from (2.9) that

k £
/ RGINE / 02 (\) dan oy (V)
d,

0 —£

£

+2/ Dk (A) Qar (A) dpnz,a,p) (V)
—£

E 2 E 2

4 / O () oy () 2 / 02, (A) dyiry oy (V)

3
=2 [ 192 00119226 (1 [z oy O]
By (2.13), we obtain

k £
/ W1 (O AC > / (1— ) dpnr fagy (V)
d,

o —£
3
=2 [ e(l+e)|duizay (N

=€
(1- 5)2 (Mu [a,b] — M11,[a,b] (‘5))

—2e(1+4¢) Y£ {112,100y N } -

Hence

k
/ W1 (OAC > (1-38) (it fusy (€) — s (—6)}

do
(2.14) —e(l+¢) {H22,[a,b] () — H22,[ab) (*5)} .
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due to
3
LU g e (§) = #11fa,p) (=€)
2.15 ap (MY < = sla, ilas
(2.15) !{Nu’[ a () 2 { +1122,[a,p) (§) — H22,[a,b) (—§)
Let

_ | xk1(C) )
Xk (€) ( Yz (€)
be a nonnegative vector-valued function such that xx2 (¢) vanishes outside the

interval [dp, k] with fdkn Xk2 () AC =1, and g1 (¢) = 0. Similarly, we get

k
A;&2«>A<><1—3@{WZ@H@>—MMMM<—9}

0

(2.16) —e(l+e) {pmap (&) — parfap (=)} -
From (2.14) and (2.16), we find
k
. {w?ﬂ () + Xia ()} AC

o p1,fap) (€) = f11,fa) () }
> (1-de 5){+mﬂwu®umwm<@ '

If the number & > 0 is selected such that 1 — 4e — 2 > 0, then the statement
follows for the functions fi11,(q,5 (—§) and pag (4,5 (—&) , relying on their mono-
tonicity. For the function g9 (4,5 (=€), it follows from the Cauchy-Schwarz
inequality. 0

Now let’s define the following spaces.

H = L*(I3C?) + 12 (145C?), be a Hilbert space endowed with the
following inner product

<MXM*=[(w@%xKD@A<+a/(WK%xKD@AQ

Iy
where Is = (—o0,d) C T, Iy = (d,00) C T,
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Let o be any non-decreasing function on —oco < A < oo. Lf, (R) be a
Hilbert space of all functions w : R — R which are measurable with respect
to the Lebesque—-Stieltjes measure defined by g and such that

[ @ oaem <,

with the inner product

w0, [ T LMW de(n).

—0o0
THEOREM 2.2. Let w is a real vector-valued function and w € H. There
are two monotone functions p11 (A) and pag (), and a function pis (N) with
variation bounded in each finite interval, none of which depends w, and such
that the following Parseval equality holds

/ @ (0% AC +a / o (O AC
I3 Iy

(2.17) / 3 () () disy ().

0 4,5=1

IE (@ (€)1t (¢ A)) g2 AC
Q; (\) = lim (i=1,2).

ta fdn (OJ (C) 7¢i (Cv )‘))(ﬁ AC

We note that the matrix-valued function
called a spectral function for the system (2.1),

o= (28,
where

(1) (1)
_ wlm(<)7 (el o w2m(<)’ Cels
e { w80, (en, #m97 {

satisfies the following conditions:

1) wy, (¢) vanishes outside the interval [-m, d) U (d, m], where a < —m <
d<m<b.

2) The real vector-valued functions w,, () and w4 (¢) are continuous.

3) w, (€) satisfies conditions (2.2)-(2.5).
By (2.6), we have

po= (/izg) =1 (M2 = p21) is
(2.3), (2.4).

PROOF. Let

d 2 m 2
/ lom ()22 AC + / Jom ()2 AC
d

m
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d 2
> o (Wm (€) 4k (O))c2 AC
(2.18) _ Z 12{ 1) Yk C } '
¢

a2 b
h=moo TE o [ (@i (©) i (Q))e A
A-integrating by parts gives

d b
/ (@m (©) 5 (O))en AC + /d (@ ()35 (O))em AC

_
- &

a

Wi (O [0 © +p©uY ©)] A¢

b v
0 [ O [T © +p©02 (0] A

d A
b [ O [ @+ r©ul ©] A¢

a

b A
¥ jka | e [y,i? (©+7(© v (©)] A¢
1

[—whn () + QWi (O] i (©) A
1 b
bW a/d [ Wi () win) (C)] v (0) A¢
1 A
A (©whn ()] w17 (©) AC
1

b A
i [ [wiil (©) +7(Q) w2 (©)] 0 (© AC

It follows from condition 1 that

s L { S (@m (€)1 (e AC }

s Fo [ (wm (€), yk ()2 AC

2

S [80” (@ + P win (O] wil) (0 A¢
o f7 [~ (© +p (@i (0] (© AC

o [ O+ (©whi (O] E (©) A

o fi [l @+ (©wl (0] (© AC
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P [T (@ + O wil (] Y (© ¢

o f7 [~ (© +p Qi (0] (© AC

IA
an‘ —
O
x|

k=—o0

0 [ O+ Qi (0] i () AC

o [} [0 Q)+ QW (O] i (© A

I [T+l ()] A
v 7 [T (O +p©w® (0] Ac

52 A
L [ @ +r©ui 0] A

va 7 [0 (0 +r (w2 (0] Ac
By (2.18), we find
S Nwm (22 A+ a [ lwm (O)llg2 AC

=Y veneen 2z {wm () () g}

< ¥ % {lwom ()5 (urtn (5 M) + vetha (5 A6)) g}

—N<M\,<N k
S O 9 g O,
i,5=1

where
Qim (>\) = <wm () s i (~7 )‘)>H (Z =1, 2) :

Therefore, we obtain

JE Nwm (Ollze AC + @ [ [[wm (€22 AC

— =1 Qim (A) Qim (A) ditij a0 (A)
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IN

2
—l) (O +p Qi ()] A

1)A

sl |
rags [ [l © Qw2 0] A
b [ 00 0] A

(219) iz [ B @+ r©uf 0] ac

By Helly’s theorems and Lemma 2.1, we can find sequences {ay } and {b; } such
that the functions ji;; [a, 5, (A) converge (ar — —00, by, — 00) to a function
wij (A) (4,5 =1,2). It follows from (2.19) that

S lwom (Ol AC+ o [ lwm (€122 AC
— N 2F s Qi (V) Qo () gy (V)
<o [ [ @+t
vags [ [l ©+p©ufC
v [ © 0 0] ac

m 2
e [ [ @+ r©ufo] ac

As N — oo, we see that

¢ 2 " 2
| lom @I a¢+a / o (€)1 AC
-m d

-/ 5 Qi () 2 (W)t ().

0 4.5=1

2

o ac
ol s

Now let

W), ¢eI
“(Q‘{ W@, (el

is a real vector-value function and w € H. Choose vector-valued functions

(1)
w , el
wy (C) — ?2) (C) < 3
Wn (C)a C € -[4’
satisfying conditions 1-3 and such that
2
lim H W OJ7(]1) ©)

n—00 C2

A¢
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+a lim b Hw@) () — w® () Z AC = 0.
Let ! 4
%= [ (@70 (6) , A
+a /d ) (@) i (6 N) , AC (1=1,2).
Then, we find
| io s L, ac+a [ e @[, ac
- [ S 0 () 20 (W) ity ()
By
Since ’
[ e @-a Ol acta [~ © - O], ac o

as 11,12 — 0o, we conclude that

/- Z i ) 2y (N) = i () Ry (V) iy (A)

- /_:‘MSP(C)—M%’(C)HCZAHQ / o @~ O, 8¢ 0

as 11,72 — 00. Therefore, there is a limit function Q; (¢ = 1, 2) which satisfies

[ ol aca /fuw ol
-/ 5000, () diy O,

0 45=1

A¢

by the completeness of the space L? (R).
Now, we shall prove that the sequence

d

K (0) = [ @ (0,01 ¢ Mo

+ / "W (0) 4 (G A)) e AC (i = 1,2)
d

converges as 1) — 00 to Q; (i = 1,2) in L? (R). Let x be another function in
H. ¥ (X\) can be defined by x. It is obvious that

/ oo o @ -xV @, ac+a [ o @ -x@ )]

A
(C2C
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= /:» Z {2 () =2 (V) (4 (V) = 25 (A)}dpaj (A) -

Let

0, otherwise.

X(C){ UJ(C), CE [—Uad)U(dﬂ?]

Therefore, we obtain

|3 000 = Ko () (% () = Koy () iy )

=00 =1
-n 2 o0 2
— [ el acra [ @ @], a0 0 o).
oo c2 " c2
which proves that (K,;) converges to Q; (i = 1,2) in L?(R) as n — co. 0

THEOREM 2.3. Suppose that the real vector-valued functions

W), T M), T

w,x € H, and Q; (A), 3;(A\) (i = 1,2) are their Fourier transforms. Then,
the following generalized Parseval equality holds

/_ : («V (X (©) , AC+a /d NESIGRE (), AC

:/OO >N T (N dpag (V) -

i j=1

PROOF. Since 2 F ¥ are transforms of w F x, we see that

[ @ @l acra [ o @ +x@ 0, a¢
e) = [ 62 )45 ) (6 )+ 3, () i O
and |

[ v @-x0 0, acta [~ o @ -x 0, a¢
2 = [ (@)~ B ) € 00— 5 () 4.

= j=1

By (2.20) and (2.21), we get the desired result. d
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THEOREM 2.4. Let w is a real vector-valued function

_ w(l)(C)a C S IS
“(©) { w@(Q), Cely

and w € H. Then, the integrals
|20 € iy () (1.5 = 1.2

converge in H. Thus, we obtain the spectral expansion formula

2= [ TN ) 4 (N sy ()

—00 j=1
Proor. Write
s 2
e ©= 30 25 (€N iy (),
=S j=1
where s > 0, ws, € H and
[ W0, cer
ws(C) { ng)(C), C€ I4.
Let

M), cel
X(O:{ Q”Ec; Cer, XU

be a real vector-valued function which is equal to zero outside the finite in-
terval [—7,d) U (d, 7] , where 7 > m. Hence we get

[ (@), acka [ (4 ©),, A¢

C2

d s 2
- /_ (/ ZQi<A>wj<<,A>dmj<A>7x<l>(4)) AC

C2

+a / (/ ZQz-(A)%(C,/\)duij(/\),x(Q)(C)) AC

C2

s 2 I (M ()45 (6 AN) e AC
_ / 3o (A){ : }
=1 o 7 (X (€)1 (G N)) o AC

(2.22) = [ 2 Wy ).

1,j=1
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From Theorem 2.3, we find

[ moav @) acee [ (60 ©00) a0

o d Cc2

o 2
(2.23) = / QNS () dps (A).-
00 =1
By virtue of (2.22) and (2.23), we deduce that
2

(2.24) (0w X) g = /| 2 0 s .
Let
X () = { w (€) —Ows(C)7 ¢ € [—s,d) U (d,s]

o , otherwise.
It follows from (2.24) that

2
fo—willy = [ 30 202 () dus ().
IA|>s ij=1
Letting s — oo gives the desired result. ]
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