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ON b-REPDIGITS AS PRODUCTS OR SUMS OF
FIBONACCI, PELL, BALANCING, AND JACOBSTHAL

NUMBERS

Chèfiath Awero Adégbindin, Kouèssi Norbert Adédji and Alain
Togbé

Abstract. Let b ≥ 2 be an integer. In this paper, we study the

repdigits in base b that can be expressed as sums or products of Fibonacci,
Pell, Balancing and Jacobsthal numbers. The proofs of our main theorems

use lower bounds for linear forms in logarithms of algebraic numbers and

a version of the Baker-Davenport reduction method.

1. Introduction

For an integer b ≥ 2, a positive integer N is called a base b-repdigit if it
has only one digit in its base b representation. That is,

N = d

(
b` − 1

b− 1

)
,

for some integers ` ≥ 1 and d ∈ {1, . . . , b − 1}. When b = 10, one usually
omits to mention b and simply calls this number a repdigit. The sequence of
numbers with repeated digits is the sequence A010785 in Sloane’s On-Line
Encyclopedia of Integer Sequences (OEIS) [19].

Let P,Q be non-zero integers. The polynomial X2 − PX +Q, called the
characteristic polynomial, has two roots

P +
√
D

2
,
P −

√
D

2
.
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The number D = P 2−4Q is called its discriminant. Now, assume that D 6= 0.
For each n ≥ 0, we define the sequence Un = Un(P,Q) by

U0 = 0, U1 = 1, Un = PUn−1 −QUn−2.

This sequence (Un)n≥0 is called a Lucas sequence with parameters (P,Q).
In this paper, we discuss four particular Lucas sequences: Fibonacci, Pell,
Balancing, and Jacobsthal sequences. The Fibonacci sequence denoted by
(Fn)n≥0 is the Lucas sequence corresponding to the parameters (P,Q) =
(1,−1) and the Pell sequence (Pn)n≥0 is the Lucas sequence with the pa-
rameters (P,Q) = (2,−1). Also, the Balancing sequence (Bn)n≥0 and Ja-
cobsthal sequence (Jn)n≥0 correspond to the parameters (P,Q) = (6, 1) and
(P,Q) = (1,−2), respectively. In the literature, we note that many theorists
are interested in solving Diophantine equations involving linear recurrent se-
quences and repdigits, essentially using Baker’s method based on linear forms
in logarithms (see [1], [2], [4], [5] [6], [9], [11], [12], [13], [15],[16], [18]). Re-
cently, the authors of [6] and [20] found all repdigits that can be written as
sums or products of Fibonacci and Tribonacci numbers with the same index.
Later, the two previous results were generalized in [3]. This study deals with
a similar work with an extension to four Lucas sequences. More precisely, we
fully solve the following Diophantine equations

FnPnBnJn = d

(
b` − 1

b− 1

)
(1.1)

and

(1.2) Fn + Pn +Bn + Jn = d

(
b` − 1

b− 1

)
,

in positive integers b, n, `, d with b ≥ 2 and d ∈ {1, . . . , b− 1}.
We organize this paper as follows. In Section 2, we recall some elementary

properties of Fibonacci, Pell, Balancing, and Jacobsthal numbers, a result
due to Matveev on lower bounds of linear forms in logarithms of algebraic
numbers. The proofs of our main results are given in Section 3.

2. Some useful tools

In this section, we recall some tools on the considered sequences and
Matveev’s result [17].

2.1. Linear forms in logarithms. Let η be an algebraic number of degree d,
let a > 0 be the leading coefficient of its minimal polynomial over Z and let
η = η(1), . . . , η(d) denote its conjugates. The logarithmic height of η is defined
by

h(η) =
1

d

log |a|+
d∑

j=1

log max
(

1,
∣∣∣η(j)

∣∣∣)
 .
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This height has the following basic properties. For η1, η2 algebraic numbers
and m ∈ Z, we have

h(η1 ± η2) ≤ h(η1) + h(η2) + log 2,

h(η1η
±1
2 ) ≤ h(η1) + h(η2),

h(ηm1 ) = |m|h(η1).

Now, let L be a real number field of degree dL, γ1, . . . , γs ∈ L and b1, . . . , bs ∈
Z \ {0}. Let B ≥ max{|b1|, . . . , |bs|} and

Γ = γb11 · · · γbss − 1.

Let A1, . . . , As be real numbers with

Ai ≥ max{dLh(γi), | log γi|, 0.16}, i = 1, 2, . . . , s.

With the notations above, Bugeaud, Mignotte and Siksek [8, Theorem 9.4]
proved the following result which is a variant of Matveev’s result [17].

Theorem 2.1. Assume that Γ 6= 0. Then

log |Γ| > −1.4 · 30s+3 · s4.5 · d2
L · (1 + log dL) · (1 + logB) ·A1 · · ·As.

2.2. Some properties of Fibonacci, Pell, Balancing, and Jacobsthal sequences.
We recall here some useful properties of Fibonacci, Pell, Balancing and Ja-
cobsthal sequences. The Binet’s formula for the Fibonacci sequence is

(2.3) Fn =
αn − (−α−1)n√

5
, for n ≥ 0,

where α = (1 +
√

5)/2. Using this formula, we can deduce that

(2.4) αn−2 ≤ Fn ≤ αn−1, for n > 1.

It is also possible to see that

(2.5) Fn =
αn

√
5

+ v with |v| ≤ 1√
5
, for n ≥ 0.

In the case of Pell sequence, we have

(2.6) Pn =
βn − (−β−1)n

2
√

2
, for n ≥ 0,

where β = 1 +
√

2. Moreover, we can deduce that

(2.7) βn−2 ≤ Pn ≤ βn−1, for n > 1.

We also have

(2.8) Pn =
βn

2
√

2
+ w with |w| ≤ 1

2
√

2
, for n ≥ 0.
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Next, the Binet’s formula for the general terms of Balancing sequence is given
by

(2.9) Bn =
γn − (−γ−1)n

4
√

2
, for n ≥ 0,

where γ = 3 + 2
√

2. Using the above formula, we deduce the following in-
equalities

(2.10) γn−2 ≤ Bn ≤ γn−1, for n > 1.

It follows from (2.9) that

(2.11) Bn =
γn

4
√

2
+ r with |r| ≤ 1

4
√

2
, for n ≥ 0.

Finally, the Binet’s formula for the general terms of the Jacobsthal sequence
is given by

(2.12) Jn =
2n − (−1)n

3
, for n ≥ 0

and by induction on n, we see that

(2.13) 2n−2 ≤ Jn ≤ 2n−1, for n > 1.

3. Main results

3.1. On b-repdigits as products of Fibonacci Pell, Balancing and Jacobsthal
numbers. In this subsection, we will prove our first main result.

Theorem 3.1. Let b ≥ 2 be an integer. Then, the Diophantine equation
(1.1) has only finitely many solutions in integers (n, b, d, `) such that n, ` ≥ 1
and 1 ≤ d ≤ b− 1. Moreover, we have

n < 7.5× 1018 log3 b and ` < 4.2× 1019 log3 b.

Note that if n = 1, then all solutions of equation (1.1) are of the form
(n, b, d, `) = (1, b, 1, 1) with b ≥ 2. For the remaining of the proof, we consider
n ≥ 2. The following result will be useful in proving Theorem 3.1, which gives
a relation between `, n and b of equation (1.1).

Lemma 3.2. All solutions of Diophantine equation (1.1) satisfy

(`− 1)
log b

log(2αβγ)
+ 1 < n < `

log b

log(2αβγ)
+ 2.

Proof. From inequalities (2.4), (2.7), (2.10), and (2.13), we get

αn−2βn−2γn−22n−2 ≤ FnPnBnJn = d

(
b` − 1

b− 1

)
< b`.(3.14)

Taking the logarithm of both sides of (3.14), we get

n log(2αβγ) < ` log b+ 2 log(2αβγ).(3.15)
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For the lower bound, from (2.4), (2.7), (2.10), and (2.13), we have

b`−1 < d

(
b` − 1

b− 1

)
= FnPnBnJn ≤ αn−1βn−1γn−12n−1.

Taking the logarithm of both sides, we get

(`− 1) log b < (n− 1) log(2αβγ),

which leads to

(`− 1) log b+ log(2αβγ) < n log(2αβγ).(3.16)

Combining (3.15) and (3.16), we obtain the desired inequalities.

Now, we are ready to prove Theorem 3.1. Substituting (2.5), (2.8), (2.11),
and (2.12) in (1.1), we have

db`

b− 1
− d

b− 1
=

(
αn

√
5

+ v

)(
βn

2
√

2
+ w

)(
γn

4
√

2
+ r

)(
2n

3
− (−1)n

3

)
=

(
(αβ)n

2
√

10
+
wαn

√
5

+
vβn

2
√

2
+ vw

)(
(2γ)n

12
√

2
− (−γ)n

12
√

2
+
r2n

3
− r(−1)n

3

)
=

(2αβγ)n

24
√

20
− (−αβγ)n

24
√

20
+ r

(2αβ)n

6
√

10
− r (−αβ)n

6
√

10
+ w

(2αγ)n

12
√

10

− w (−αγ)n

12
√

10
+ rw

(2α)n

3
√

5
− rw (−α)n

3
√

5
+ v

(2βγ)n

48
− v (−βγ)n

48

+ rv
(2β)n

6
√

2
− rv (−β)n

6
√

2
+ vw

(2γ)n

12
√

2
− vw (−γ)n

12
√

2
+ vwr

2n

3
− vwr (−1)n

3
,

which leads to

(2αβγ)n

24
√

20
− db`

b− 1
= − d

b− 1
+

(−αβγ)n

24
√

20
− r (2αβ)n

6
√

10
+ r

(−αβ)n

6
√

10
− w (2αγ)n

12
√

10

+ w
(−αγ)n

12
√

10
− rw (2α)n

3
√

5
+ rw

(−α)n

3
√

5
− v (2βγ)n

48
+ v

(−βγ)n

48

− rv (2β)n

6
√

2
+ rv

(−β)n

6
√

2
− vw (2γ)n

12
√

2
+ vw

(−γ)n

12
√

2
− vwr2n

3

+ vwr
(−1)n

3
.
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Taking the absolute value and dividing both sides of the above equality by
(2αβγ)n/24

√
20, we get∣∣∣∣∣1− db`

b− 1
· 48

√
5

(2αβγ)n

∣∣∣∣∣ < 48
√

5

(2αβγ)n
+

1

2n
+

1

γn
+

1

(2γ)n
+

1

βn
+

1

(2β)n
+

1

(βγ)n

+
1

(2βγ)n
+

1

αn
+

1

(2α)n
+

1

(αγ)n
+

1

(2αγ)n
+

1

(αβ)n

+
1

(2αβ)n
+

1

(αβγ)n
+

1

(2αβγ)n
<

16

αn
,

which holds, for n ≥ 2. Thus, we obtain∣∣∣∣∣1− 48d
√

5

b− 1
· b` · (2αβγ)−n

∣∣∣∣∣ < 16

αn
.(3.17)

Put
Γ1 := 1− γb11 · γ

b2
2 · γ

b3
3 ,

with

(γ1, b1) :=

(
48d
√

5

b− 1
, 1

)
, (γ2, b2) := (b, `) and (γ3, b3) := (2αβγ,−n).

Next, we will apply Theorem 2.1 on Γ1. First, we need to check that
Γ1 6= 0. Indeed, we have

(2αβγ)2n =
5(48d)2

(b− 1)2
b2`

and so (2α)2n ∈ Q(
√

2)∩Q(
√

5). Since Q(
√

2)∩Q(
√

5) = Q, then we conclude
that (2α)2n ∈ Q, which is not possible. Therefore, Γ1 6= 0. Note that L :=

Q(γ1, γ2, γ3) = Q(
√

2,
√

5), so dL := 4. Moreover, we have h(γ2) = log b and

h(γ3) = h(2αβγ) ≤ h(2) + h(α) + h(β) + h(γ) = log 2 +
1

2
log(αβγ).

Furthermore, we get

h(γ1) = h

(
48d
√

5

b− 1

)
≤ h

(
d

b− 1

)
+ h(48) + h(

√
5)

= log(max{b− 1, d}) + log 48 +
1

2
log 5

≤ log(b− 1) + log(48
√

5)

< log b+ log(48
√

5).

Thus, we can take

A1 := 4 log b+ 4 log(48
√

5), A2 := 4 log b and A3 := 4 log 2 + 2 log(αβγ).

As n ≥ 2 and
B ≥ max{|b1|, |b2|, |b3|} = max{`, n, 1},
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we can take B := max{`, n}. With the previous data and s := 3, Theorem 2.1
tells us that

log |Γ1| > −1.4 · 306 · 34.5 · 42(1 + log 4)(1 + logB) ·A1 ·A2 ·A3,(3.18)

where

A1 ·A2 ·A3 =
(

4 log b+ 4 log(48
√

5)
)
· 4 log b · (4 log 2 + 2 log(αβγ))

< 1.16 · 103 log2 b.(3.19)

In the above inequality, we have used the fact that 4 log b + 4 log(48
√

5) <
32 log b, which holds for all b ≥ 2. Combining (3.17), (3.18), and (3.19), we
get

n logα− log 16 < 6.35× 1015 · log2 b · (1 + logB).(3.20)

Case 1: B = n. First, for n ≥ 2 we have 1 + log n < 2.5 log n. Therefore,
from (3.20) it follows that

n logα− log 16 < 6.35× 1015 · log2 b · (1 + log n)

and then

n < 3.3× 1016 · log2 b · log n,(3.21)

which is valid for n ≥ 2.
Case 2: B = `. Then from (3.20), we get

n logα− log 16 < 6.35× 1015 · log2 b · (1 + log `).(3.22)

By Lemma 3.2, it is easy to see that ` < 5.51n. So, 1 + log ` < 5.1 log n.
Using this with (3.22), we obtain

n < 6.8× 1016 · log2 b · log n.(3.23)

In all cases, we can consider n < 6.8 × 1016 · log2 b · log n. To get an upper
bound of n in term of b, we need the following lemma due to Guzmán and
Luca.

Lemma 3.3 (Lemma 7 of [14]). If l ≥ 1, H >
(
4l2
)l

and H > L/(logL)l,
then

L < 2lH(logH)l.

We can apply Lemma 3.3 with

l = 1, L = n and H = 6.8× 1016 · log2 b.

Therefore, we obtain

n < 2× 6.8× 1016 log2 b× (38.8 + 2 log log b) < 7.5× 1018 · log3 b

where we have used the fact that 38.8 + 2 log log b < 55 log b, for b ≥ 2. Next,
` < 4.2× 1019 · log3 b. This completes the proof of Theorem 3.1.
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Now, we will solve the Diophantine equation (3.1), for 2 ≤ b ≤ 10. There-
fore, we have the following result.

Corollary 3.4. The only solution of the Diophantine equation (1.1),
for 2 ≤ b ≤ 10, is (n, b, d, `) = (2, 5, 2, 2), where n ≥ 2. Hence, this solution
gives the following representation

2

(
52 − 1

4

)
= 225 = F2 · P2 ·B2 · J2.

For the proof of Corollary 3.4, we obtain very large bounds for the vari-
ables whose reduction requires a variant of reduction method given by Dujella
and Pethő [10] that we present as follows. In fact, we will use the improved
version given by Bravo, Gómez, and Luca (see [7, Lemma 1]). For a real
number x, ‖x‖ is the distance from x to the nearest integer.

Lemma 3.5. Let M be a positive integer, p/q be a convergent of the con-
tinued fraction expansion of the irrational number τ such that q > 6M, and
A,B, µ be some real numbers with A > 0 and B > 1. Furthermore, let

ε := ‖µq‖ −M · ‖τq‖ .
If ε > 0, then there is no solution to the inequality

(3.24) 0 < |uτ − v + µ| < AB−w

in positive integers u, v and w with

u ≤M and w ≥ log(Aq/ε)

logB
.

Proof of Corollary 3.4. Since 2 ≤ b ≤ 10, the bounds of n and ` become
n < 9.2× 1019 and ` < 5.2× 1020 according to Theorem 3.1. To lower these
bounds, we return to inequality (3.17) by putting

Λ1 := ` log b− n log(2αβγ) + log

(
48d
√

5

b− 1

)
.

Inequality (3.17) can be written as

|Γ1| =
∣∣eΛ1 − 1

∣∣ < 16

αn
.

For n ≥ 8, we get
∣∣eΛ1 − 1

∣∣ < 16

αn
<

1

2
, which also implies that

1

2
< eΛ1 <

3

2
.

• When Λ1 > 0, then we get

0 < Λ1 < eΛ1 − 1 = |eΛ1 − 1| < 16

αn
.

• When Λ1 < 0, we get

0 < |Λ1| < e|Λ1| − 1 = e−Λ1(1− eΛ1) <
32

αn
.
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In both cases, we have 0 < |Λ1| <
32

αn
, which implies

0 <

∣∣∣∣∣` log b

log(2αβγ)
− n+

log
(
16d
√

5/3
)

log(2αβγ)

∣∣∣∣∣ < 8.4 · α−n.(3.25)

Now, we apply Lemma 3.5 with

τ :=
log b

log(2αβγ)
, µ :=

log
(
16d
√

5/3
)

log(2αβγ)
, A := 8.4, B := α,

and w := n. Note that ` < 5.2 × 1020, so we can take M := 5.2 × 1020. We
use Mathematica to do the computations. Notice that if the first convergent
such that q > 6M does not satisfy the condition ε > 0, then we use the next
convergent until we find the one that satisfies the conditions. Let qt be the
denominator of the t-th convergent of the continued fraction of τ. In fact, the
results obtained are the following table.

b 2 3 4 5 6 7 8 9 10
qt q37 q36 q41 q40 q49 q45 q41 q38 q52

n ≤ 114 114 117 114 114 112 120 121 121
ε > 0.3098 0.0394 0.0716 0.2422 0.0592 0.0733 0.0040 0.0017 0.0111

Therefore, we obtain n ≤ 121, which is valid in all cases. Hence, it remains
to check equation (1.1) for 2 ≤ n ≤ 121 and 1 ≤ ` ≤ 666. A quick inspection
using Maple reveals that the Diophantine equation (1.1) has only the solution
mentioned in Corollary 3.4. This ends the proof of Corollary 3.4.

3.2. On b-repdigits as sums of Fibonacci, Pell, Balancing and Jacobsthal num-
bers. In this subsection, we will follow the method in Subsection 3.1. Our
second main result is following result.

Theorem 3.6. Let b ≥ 2 be an integer. Then, the Diophantine equation
(1.2) has only finitely many solutions in integers (n, b, d, `) such that n, ` ≥ 1
and 1 ≤ d ≤ b− 1. Moreover, we have

n < 1.5× 1016 log3 b and ` < 4.5× 1016 log3 b.

For n = 1, it is easy to show that all solutions of equation (1.2) are of the
form (n, b, d, `) = (1, 3, 1, 2), (1, b, 4, 1), for b ≥ 5. Now, we assume that n ≥ 2.
The next lemma relates the sizes of n and `.

Lemma 3.7. All solutions of the Diophantine equation (1.2) satisfy

(`− 1)
log b

log γ
+

log(γ/4)

log γ
< n < `

log b

logα
+ 2.
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Proof. Combining inequalities (2.4), (2.7), (2.10), and (2.13), we have

αn−2 < Fn + Pn +Bn + Jn = d

(
b` − 1

b− 1

)
< b`.(3.26)

Taking the logarithm of both sides of (3.26), we get

n logα < ` log b+ 2 logα.(3.27)

Now, from (2.4), (2.7), (2.10), and (2.13), we obtain

b`−1 ≤ d
(
b` − 1

b− 1

)
= Fn + Pn +Bn + Jn

≤ αn−1 + βn−1 + γn−1 + 2n−1 < 4γn−1.

Taking the logarithm of both sides, we have

(`− 1) log b < log 4 + (n− 1) log γ,

which leads to

(`− 1) log b+ log(γ/4) < n log γ.(3.28)

Combining (3.27) and (3.28), we obtain the desired inequalities.

Now, we will complete the proof of Theorem 3.6. For this, inserting (2.5),
(2.8), (2.11), and (2.12) in (1.2), we have

db`

b− 1
− d

b− 1
=
αn

√
5

+ v +
βn

2
√

2
+ w +

γn

4
√

2
+ r +

2n

3
− (−1)n

3
,

which leads to

(3.29)
γn

4
√

2
− db`

b− 1
= − d

b− 1
− αn

√
5
− v − βn

2
√

2
− w − r − 2n

3
+

(−1)n

3
.

Taking the absolute value of both sides of (3.29), for n ≥ 2, we get∣∣∣∣ γn4
√

2
− db`

b− 1

∣∣∣∣ < d

b− 1
+
αn

√
5

+ |v|+ |β|
n

2
√

2
+ |w|+ |r|+ 2n

3
+

1

3

<
αn

√
5

+
βn

2
√

2
+

2n

3
+

1√
5

+
1

2
√

2
+

1

3
+

1

4
√

2
+ 1

< βn

[
2.32

βn
+

1

(β/α)n
√

5
+

1

3(β/2)n
+

1

2
√

2

]
= c · βn

where

c =
2.32

βn
+

1

(β/α)n
√

5
+

1

3(β/2)n
+

1

2
√

2
< 1.2 for n ≥ 2.

Hence, we obtain

(3.30)

∣∣∣∣ γn4
√

2
− db`

b− 1

∣∣∣∣ < 1.2 · βn.
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Now, dividing both sides of (3.30) by
γn

4
√

2
, we get∣∣∣∣∣1− b` · γ−n · 4d

√
2

b− 1

∣∣∣∣∣ < 4.8
√

2

(γ/β)n
.(3.31)

Let

Γ2 := b` · γ−n · 4d
√

2

b− 1
− 1.(3.32)

Next, we will apply Theorem 2.1 to Γ2. First, we need to check that Γ2 6= 0.
Note that if Γ2 = 0, then we see that

γn =
4db`
√

2

b− 1
,

which is false, since taking the norm of both sides in L = Q(
√

2) we arrive at

±1 = −2

(
4db`

b− 1

)2

,

a clear contradiction. We conclude that Γ2 6= 0. So, to apply Theorem 2.1 to
(3.32), we take s := 3 and

(γ1, b1) := (b, `), (γ2, b2) := (γ,−n), (γ3, b3) :=

(
4d
√

2

b− 1
, 1

)
.

Thus, we see that L = Q(γ1, γ2, γ3) = Q(
√

2) and then dL = [L : Q] = 2. Note
also that h(γ1) = log b, h(γ2) = (log γ)/2, and

h(γ3) ≤ h
(

d

b− 1

)
+ h(4) + h(

√
2) = log (max{b− 1, d}) +

1

2
log 32

= log b+
1

2
log 32.

Let us take

A1 = 2 log b, A2 = log γ and A3 := 2 log b+ log 32.

Since n ≥ 2 and B ≥ max{|b1|, |b2|, |b3|}, then we can take B = max{n, `}.
Hence, by Theorem 2.1, we get

log |Γ2| > −1.4 · 306 · 34.5 · 22(1 + log 2) · (1 + logB) ·A1A2A3(3.33)

with

A1A2A3 = 2 log b · log γ · (2 log b+ log 32)

< 16 · log γ · log2 b.(3.34)
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In above inequality, we have used the fact that log b + log 4
√

2 < 4 log b, for
b ≥ 2. Thus, from (3.31), (3.33), and (3.34), we obtain

n < 3.11× 1013 · (1 + logB) · log2 b+ 2.2.(3.35)

Now, we study the following two cases according to the values of B.
Case a: B = n. Then, for n ≥ 2, we have 1 + log n < 2.5 log n. Thus,

the inequality (3.35) leads to

n < 9.4× 1013 · log2 b · log n.

Case b: B = `. We have

n < 3.11× 1013 · (1 + log `) · log2 b+ 2.2.(3.36)

From Lemma 3.7, one can easily see that ` < 3n, then inequality (3.36) implies

n < 1.6× 1014 · log2 b · log n,

where we have used the fact that 1 + log 3 + log n < 5 log n. So, in all cases
we conclude that n < 1.6× 1014 · log2 b · log n holds, for n ≥ 2.

To obtain an upper bound of n in term of b, we will apply Lemma 3.3
with l = 1, L = n and H = 1.6× 1014 · log2 b. Thus, we obtain

n < 2 · 1.6× 1014 · log2 b · (32.8 + 2 log log b).

As 32.8 + 2 log(log b) < 46 log b for b ≥ 2, one can see that

n < 1.5× 1016 · log3 b and ` < 4.5× 1016 · log3 b.(3.37)

This completes the proof of Theorem 3.6.

Now, as an illustration we will solve equation (1.2), for 2 ≤ b ≤ 10. Thus,
we have the following result.

Corollary 3.8. The only solutions of the Diophantine equation (1.2)
with 2 ≤ b ≤ 10 and n ≥ 2 are (n, b, d, `) = (2, 4, 2, 2), (3, 8, 5, 2), (2, 9, 1, 2).
Their representations are

2

(
42 − 1

3

)
= 224 = F2 + P2 +B2 + J2,

5

(
82 − 1

7

)
= 558 = F3 + P3 +B3 + J3,

1

(
92 − 1

8

)
= 119 = F2 + P2 +B2 + J2.

Proof. When 2 ≤ b ≤ 10, Theorem 3.6 gives n < 1.84 × 1017 and ` <
5.5×1017. To reduce the upper bounds for n and `, we will apply Lemma 3.5.
So, let

Λ2 := log(Γ2 + 1) = ` log b− n log γ − log

(
4d
√

2

9

)
.
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From (3.31), we conclude that

|Γ2| =
∣∣eΛ2 − 1

∣∣ < 4.8
√

2

(γ/β)n
.(3.38)

If n ≥ 3, then |eΛ2 − 1| < 4.8
√

2

(γ/β)n
<

1

2
, which implies that

1

2
< eΛ2 <

3

2
. For

Λ2 > 0, we have

0 < Λ2 < eΛ2 − 1 = |eΛ2 − 1| < 4.8
√

2

(γ/β)n
.

For Λ2 < 0, we have

0 < |Λ2| < e|Λ2| − 1 = e|Λ2|(1− e−|Λ2|) <
9.6
√

2

(γ/β)n
.

Therefore, in all cases we have 0 < |Λ2| <
9.6
√

2

(γ/β)n
, which implies that

0 <

∣∣∣∣∣` log b

log γ
− n− log(4d

√
2/9)

log γ

∣∣∣∣∣ < 7.8 · (γ/β)−n.(3.39)

Using (3.39) and Lemma 3.5, we can take M := 5.5 × 1017 because ` <
5.5×1017. For the application of Lemma 3.5, we define the following quantities

τ :=
log b

log γ
, µ := − log(4d

√
2/9)

log γ
, A := 7.8, B := γ/β and w := n.

We used Mathematica to find the results mentioned in the following table
where qt denotes the denominator of the t-th convergent of the continued
fraction of τ such that qt > 6M and ε > 0.

b 2 3 4 5 6 7 8 9 10
qt q38 q37 q38 q31 q23 q43 q42 q34 q38

n ≤ 54 52 55 55 56 55 55 54 56
ε > 0.2104 0.2221 0.0291 0.0248 0.0499 0.0332 0.0980 0.0719 0.0109

So, we obtain 2 ≤ n ≤ 56 and then 1 ≤ ` ≤ 168. To finish the proof, we use a
simple routine written in Maple which reveals that the Diophantine equation
(1.2) has only the solutions mentioned in the statement of Corollary 3.8 if
n ≥ 2 and 2 ≤ b ≤ 10. This completes the proof of Corollary 3.8.
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O b-Rep znamenkama kao umnošcima ili zbrojevima
Fibonaccijevih, Pellovih, balansirajućih i Jacobsthalovih brojeva

Chèfiath Awero Adégbindin, Kouèssi Norbert Adédji and Alain Togbé

Sažetak. Neka je b ≥ 2 cijeli broj. U ovom radu proučavamo

repoznamenke u bazi b koje se mogu izraziti kao zbrojevi ili

umnošci Fibonaccijevih, Pellovih, Balansirajućih i Jacobsthalovih

brojeva. Dokaz našeg glavnog teorema koristi donje granice za

linearne oblike u logaritmima algebarskih brojeva i verziju Baker-

Davenportove redukcijske metode.
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