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Abstract

Let E be an elliptic curve over Q given by y2 = f(x) where f(x) =
x(x − 1)(x − λ). In this paper, we describe a construction of twists
Eg(u) of rank 2 over Q(u), where g(u) are polynomials over Q. The
construction leads to two sets of twists: the first consists of five twists
obtained by Rubin and Silverberg with a different method, while the
second consists of five new twists.

1 Introduction

Let f(x) = x3 + ax2 + bx + c be a cubic polynomial over Q and let E be
an elliptic curve defined by y2 = f(x). For each polynomial g over Q let Eg

denote the quadratic twist of E by g defined by

g(t)y2 = f(x),

and let Ẽg be Eg written in the form

y2 = x3 + ag(t)x2 + bg2(t)x+ cg3(t).

There is a Q(t)-isomorphism Eg → Ẽg, given by (x, y) 7→ (g(t)x, g2(t)y).
The twist Ef(t) : f(t)y

2 = f(x) has rank 1 over Q(t), with a point of infinite
order (t, 1) (see arguments given after Lemma 1). In [6] and [7] a general
method for finding quadratic extensions Q(u)/Q(t) such that the curve Ef

has a new point over Q(u) independent from (t(u), 1) has been described.
It is based on the assumption that the x-coordinate is of the form h(t(u))
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where h(t) is a linear fractional transformation in Q(t) that permutes roots
of f . By varying h’s (i.e. by composing the quadratic extensions), families of
quadratic twists of rank 3 and 4 were obtained in the case when E is defined
by y2 = x(x − 1)(x − λ). Similar results were obtained independently by
Kuwata in [5]. On the other hand, several authors successfully used another
method for constructing points on elliptic curves over Q(t) (see, for example
[1] and [2]). For elliptic curves y2 = x3 + ax2 + bx with a, b ∈ Q[t], they
searched for (as simple as possible) integral points. In the case of elliptic
curves Ef it means that we are seeking integral points on the curve Ẽf . In
this paper we make a detailed analysis of the later method for a class of
possible integral points, for quadratic twists of E : y2 = x(x−1)(x−λ). We
find that, for this class, the method rediscovers five twists coming from [6,
Propositions 2.7 and 2.9]. Further, we find that the method discovers five
new twists (see Theorem 2). In other words the method leads to new five
quadratic extensions of Q(t) over which Ef has rank two.

In Section 2 we get four sets of five quadratic twists (it is only a part of
quadratic twists that can be obtained by the approach from Section 2). We
prove that these four sets reduce to two sets of five twists (Lemma 4). In
Section 3 we prove that one of these two sets corresponds to the set of five
twists coming from [6, Propositions 2.7 and 2.9] (these five twists correspond
to five nontrivial fractional linear transformations permuting {0, 1, λ}).

2 Description and application of the method

Lemma 1 Let E be an elliptic curve over Q, let g be a polynomial over Q,
and let C be the curve s2 = g(u). Then rank(Eg(Q(u))) ≤ genus(C).

Proof. See [8, Section 4, Corollary 1] and [6, Remark 2.12].

By Lemma 1, Ef has rank 1 over Q(t), with a point of infinite order
T1(t, 1) (see e.g. [4, Corollary 1(1)]). Note that T̃1(tf(t), f

2(t)) is the corre-
sponding point on Ẽf .

In the rest of the paper, we assume that

E = Eλ : y2 = x(x− 1)(x− λ) = x3 − (λ+ 1)x2 + λx.

Then,
Eg : g(t)y2 = x(x− 1)(x− λ),

and

Ẽg : y2 = x(x− g(t))(x− λg(t)) = x3 − (λ+ 1)g(t)x2 + λg2(t)x.
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For each g, the curve Eg has three points of second order: (0, 0), (1, 0), (λ, 0).

Lemma 2 Let T (r, s) be a point on Eg. Then

T + (0, 0) =

(
λ

r
,−λs

r2

)
, T + (1, 0) =

(
r − λ

r − 1
,
(λ− 1)s

(r − 1)2

)
,

T + (λ, 0) =

(
λ(r − 1)

r − λ
,
λ(1− λ)s

(r − λ)2

)
.

Proof. By direct calculation.

We try to find a new point T̃2 on Ẽf under the assumption that it is
Q[t]-integral, especially that x̃ := x(T̃2) satisfies x̃|f2(t). Generally, for
y2 = x3 + ax2 + bx, we search for a point (x̃, ỹ) such that x̃|b and

J̃ := x̃+ a+
b

x̃
(1)

is a complete square in Q[t]. We will see that this is possible after a suitable
quadratic substitution t = t(u). In other words, the new point is defined
over a quadratic extension Q(u) of Q(t). Let us sketch the procedure. Al-
though we have a variety of possibilities for x̃, in this Section we restrict
our consideration to x̃ = A(t − α)(t − β)2, where α, β, γ are the roots of
x3 − (λ + 1)x2 + λx and A is a rational constant. Then the expression J̃
from (1) becomes

J̃A,α,β(t) =
t− α

A
(A2(t− β)2 − (λ+ 1)A(t− β)(t− γ) + λ(t− γ)2). (2)

Note that the corresponding point T2 on Ef has first coordinate x = x(T2) =

A t−β
t−γ , i.e. that it is of the form h(t) where h is a special fractional linear

transformation over Q .
Generally, J̃A,α,β is a cubic polynomial in t. We search for a substitution

t = t(u) under which it becomes a square. In the following lemma we will
describe conditions under which J̃A,α,β has a double root, or reduces to a
quadratic polynomial.

Lemma 3 Let J̃A,α,β be as in (2). Then:

(a) J̃A,α,β(t) =
1
A(t− α)((A− 1)t− (βA− γ))((A− λ)t− (βA− λγ)).

(b) If J̃A,α,β has a double root, then A = α−γ
α−β or A = λα−γ

α−β ; in both cases
α is the unique double root.
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(c) If J̃A,α,β reduces to a quadratic polynomial, then A = 1 or A = λ.

Proof.
(a) By direct calculation.
(b) It is easy to see that the polynomials (A− 1)t− (βA− γ) and (A−

λ)t− (βA− λγ) are not proportional. Now the statement follows from (a).
(c) Directly from (a).

Let us consider the case A = α−γ
α−β from Lemma 3. Then

J̃A,α,β

(t− α)2
=

β − γ

(α− γ)(α− β)
((1− λ)α+ λβ − γ)t− (αβ − (1− λ)βγ − λαγ)).

The condition that J̃ has to be a square can be restated as

t = t(u) =
u2 − (α− β)(β − γ)(γ − α)(αβ + (λ− 1)βγ − λγα)

(α− β)(β − γ)(γ − α)((λ− 1)α− λβ + γ)
. (3)

The first coordinate x = A t−β
t−γ of the corresponding point T2 on Ef(t(u))

becomes

x = x(T2) =
α− γ

α− β
· u

2 − λ(α− β)2(β − γ)2(γ − α)

u2 + (α− β)(β − γ)2(γ − α)2
. (4)

Remark 1 The point from (4) is defined over Q(u), where u =
√

kα,β(t),
with

kα,β(t) := (α−β)(β−γ)(γ−α)(((λ−1)α−λβ+γ)t+(αβ−(1−λ)βγ−λαγ)).

If (α, β, γ) = (0, 1, λ) then k(t) degenerates and we have no new points.
It is easy to see (by direct calculation) that the other five cases produce
nonisomorphic twists Ef(t(u)). Furthermore, in each case a new point

T2

(
x,

√
f(x)

f(t(u))

)
is independent from T1(t(u), 1) (see Theorem 1, below). By Lemma 1, it
means that in that cases we have rank(Ef(t(u)(Q(u))) = 2. In other words,

Ef has rank two over five quadratic extensions Q(
√

kα,β(t)) of Q(t). There
are some exceptional values of λ: if (α, β, γ) = (0, λ, 1) then λ ̸= −1, if
(α, β, γ) = (1, 0, λ) then λ ̸= 1

2 , and if (α, β, γ) = (λ, 1, 0) then λ ̸= 2. Let
us interpret (α, β, γ) as the permutation π of the letters 0, 1, λ defined by
π(0) = α, π(1) = β, π(λ) = γ. Then there is no exceptional value of λ if
and only if π is a cyclic permutation.
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In the following theorem we use arguments from [6, Lemma 2.3 and Corollary
3.3] to prove that T1 and T2 are independent.

Theorem 1 Let J̃A,α,β be as in (2), with A = α−γ
α−β . Assume that (α, β, γ) ̸=

(0, 1, λ). Then the points T1(t(u), 1) and T2

(
x,
√

f(x)
f(t(u))

)
on Ef(t(u)), where

x is as in (4), are independent.

Proof. The points T1, T2 are nonconstant, which implies that they are of
infinite order. Namely, if g is non-constant and E any elliptic curve over Q,
then in the family Eg(τ), τ ∈ Q there are infinitely many Q-nonisomorphic
quadratic twists of E (see, for example, [8, Theorem 2]). Assume that Eg has
a non-constant torsion point T over Q(u). Then the specialization produces
torsion points of order > 2 on infinitely many different Q-twists of E. It is
a contradiction (see, for example [3, Proposition 1]).

Consider the second coordinate y of the point T2. By this procedure, up
to a sign, we have

y =
x̃(t(u)− α)u

(α− β)(γ − α)f(t(u))2
=

x(t(u)− α)u

(α− β)(γ − α)f(t(u))
.

Since t(u) and x are even functions in u, we see that y is odd as a function
in u. Therefore the automorphism u 7→ −u of Q(u) over Q(t) fixes T1 and
sends T2 to −T2. This implies that T1 and T2 are independent.

Lemma 4 Let the notation be as in Lemma 3. Then:

(a) Assume that JA,α,β has a double root (reduces to a quadratic polyno-
mial). Then J λ

A
,α,γ has a double root (reduces to a quadratic polyno-

mial).

(b) Let T (respectively T ′) be the points on Ef corresponding to the choice
x̃ = A(t−α)(t− β)2 (respectively to the choice x̃ = λ

A(t−α)(t− γ)2).
Then, after a choice of the sign, we have T ′ = T + (0, 0).

Proof.
(a) Follows from Lemma 3.
(b) Follows from (a) and Lemma 2.

Remark 2 By permuting α, β, γ, the expression A = α−γ
α−β takes six dif-

ferent values λ, 1
λ , 1 − λ, 1

1−λ ,
λ−1
λ , λ

λ−1 . Then the expression λ
A takes the
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corresponding values 1, λ2, λ
1−λ , λ(1− λ), λ2

λ−1 , λ− 1. Note that (1) is invari-

ant under the transformation x̃ 7→ b
x̃ . Therefore x̃ = A(t− α)(t− β)2 leads

to the same substitution t = t(u) as x̃ = λ
A(t−α)(t−γ)2. Therefore, in both

cases we get the same twist Ef(t(u)). By Lemma 4, the corresponding points
on Ef(t(u)) differ by the point (0, 0). Therefore, without loss of generality, we

may assume that, in the case when J̃ has a double point, we have A = α−γ
α−β .

In the following theorem we will describe the case when J̃ reduces to a
quadratic polynomial. By Lemma 3, we have A = 1 or A = λ. By Lemma
4, we may assume that A = 1. We will see that this case leads to five new
quadratic twists of rank two. In other words, we find new five different
quadratic extensions Q(z) of Q(t) over which Ef has rank two.

Theorem 2 Assume that J̃A,α,β reduces to a quadratic polynomial with A =
1. For (α, β, γ) ̸= (0, λ, 1) it leads to five twists over

Q(z) = Q(t)(
√

(β − γ)(t− α)((λ− 1)t+ (β − λγ))),

with t = t(z) = αz2+(β−γ)(β−λγ)
z2−(λ−1)(β−γ)

, and the point on Ef(t(z)) with first coordi-

nate x = (α−β)z2+λ(β−γ)2

(α−γ)z2+(β−γ)2
. These five twists are different from those described

by (3), (4) and Remark 1.

Proof. By Lemma 3 (a), we get J̃A,α,β = (β−γ)(t−α)((λ−1)t+(β−λγ)).

Now we apply the transformation J̃A,α,β = ((t−α)z)2, and put into x = t−β
t−γ .

Note that these five twists are defined over five different quadratic extensions
of Q(t), which are different from the extensions Q(t)(

√
kα,β(t)) from Remark

1. Analogously as in Theorem 1, we see that the rank over Q(z) of each of
five curves is two.

3 A connection with formulas from [6] and [7]

In [6] a method of finding points on

Ef(t(u)) : f(t(u))y
2 = f(x)

with x-coordinate equal to h(t(u)) has been described, where h(t) is a linear
fractional transformation in Q(t) that permutes roots of f and Q(u) is a
suitable quadratic extension of Q(t). By [6, Proposition 2.9], given such h,
there exist a linear polynomial k and a rational function j over Q such that

f(h(t)) = k(t)f(t)j2(t).
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Therefore, we may make the substitution k(t) = u2. Then

(h(t(u)),

√
f(h(t(u))

f(t(u))
)

is a point on Ef(t(u)). This method works for f having at least one rational
root; here we concentrate on f of the form x(x−1)(x−λ) for λ ∈ Q, λ ̸= 0, 1.
We will see that this method is equivalent to the method from Section 2 in
the case when when J̃ has a double point. As we have already seen (see
Remark 2), it is sufficient to consider the case A = α−γ

α−β . Recall that this

case leads to the point on Ef with first coordinate x = α−γ
α−β · t−β

t−γ .

Theorem 3 Assume that a point T on Ef has first coordinate α−γ
α−β · t−β

t−γ .
Let h(t) = hα,β(t) be the first coordinate of T + (λ, 0). Then h permutes
letters 0, 1, λ. Explicitly, h(α) = 0, h(β) = 1, h(γ) = λ.

Proof. By Lemma 2, we get

h(t) = hα,β(t) = λ
(α− γ)(t− β)− (α− β)(t− γ)

(α− γ)(t− β)− λ(α− β)(t− γ)
.

Now the statement follows by direct calculation.

Remark 3 Theorem 3 says that formula (4) from Section 2 in this context
leads to formulas from [6, Propositions 2.7 and 2.9]

Following [7, Definition 3.1], we fix linear fractional transformations
hi; i = 1, 2, 3, 4, 5, 6 that permute roots

h1(t) = t, k1(t) = 1,

h2(t) =
t− λ

(2− λ)t− 1
, k2(t) = (1− λ)((λ− 2)t+ 1),

h3(t) =
λ2t− λ2

(λ2 − λ+ 1)t− λ
, k3(t) = λ(1− λ)((λ2 − λ+ 1)t− λ),

h4(t) =
λt

(λ+ 1)t− λ
, k4(t) = λ((λ+ 1)t− λ),

h5(t) =
λ2t− λ2

((2λ− 1)t− λ2
, k5(t) = λ(λ− 1)((1− 2λ)t+ λ2),
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h6(t) =
λt− λ2

(λ2 − λ+ 1)t− λ2
, k6(t) = λ(λ− 1)((λ2 − λ+ 1)t− λ2).

Using cycle notation we have:

h2 = (0λ), h3 = (0λ1), h4 = (1λ), h5 = (01), h6 = (01λ).

Remark 4 It is easy to check that hi, i = 1, 2, ..., 6 coincide with hα,β as
α, β, γ permute. Also, ki are square-free parts of

kα,β(t) := (α−β)(β−γ)(γ−α)(((λ−1)α−λβ+γ)t+(αβ−(1−λ)βγ−λαγ))

(see Remark 1). Explicitly:

h0,1 = h1, k0,1(t) = λ2(λ− 1)2 = λ2(λ− 1)2 · k1(t),

h0,λ = h4, k0,λ(t) = (λ− 1)2 · k4(t),

h1,0 = h5, k1,0 = k5,

h1,λ = h3, k1,λ = k3,

hλ,0 = h6, kλ,0(t) = k6,

hλ,1 = h2, kλ,1(t) = λ2 · k2(t).

We see that, for corresponding kα,β and ki, there exists dα,β ∈ Z[λ] such
that kα,β(t) = d2α,βki(t).
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