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Abstract

A Diophantine m-tuple is a set of m positive integers with the prop-
erty that product of any two of its distinct elements is one less then
a square. In this survey we describe some problems and results con-
cerning Diophantine m-tuples and their connections with Fibonacci
numbers.

1 Introduction

The Greek mathematician Diophantus of Alexandria found four positive
rationals 1/16, 33/16, 17/4, 105/16 with the property that the product
of any two of them increased by 1 is a square of a rational number (see
[9, 10]). The first set of four positive integers with the same property, the
set {1, 3, 8, 120}, was found by Fermat. Indeed, we have

1 · 3 + 1 = 22, 1 · 8 + 1 = 32, 1 · 120 + 1 = 112,

3 · 8 + 1 = 52, 3 · 120 + 1 = 192, 8 · 120 + 1 = 312.

Definition 1 A set of m positive integers {a1, a2, . . . , am} is called a Dio-
phantine m-tuple if aiaj + 1 is a perfect square for all 1 ≤ i < j ≤ m. If
a1, a2, . . . , am are nonzero rationals with the same property, then such set is
called a rational Diophantine m-tuple.

In 1969, Baker and Davenport [1] proved that the Fermat’s set cannot
be extended to a Diophantine quintuple. In 1998, Dujella and Pethő proved
that even the Diophantine pair {1, 3} cannot be extended to a Diophantine
quintuple. A ”folklore” conjecture is that there does not exist a Diophantine
quintuple. However, the first absolute upper bound for the size of Diophan-
tine tuples was given in 2001, when we proved that there does not exist a
Diophantine 9-tuple (see [20]). This result was recently improved in [21],
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where we proved that there does not exist a Diophantine sextuple and that
there are only finitely many, effectively computable, Diophantine quintuples.

On the other hand, no absolute upper bound for the size of rational
Diophantine tuples is known. The first rational Diophantine quintuple, the
set

{1, 3, 8, 120, 777480/8288641},
was found by Euler. In 1999, Gibbs found several examples of rational
Diophantine sextuples, e.g.

{11/192, 35/192, 155/27, 512/27, 1235/48, 180873/16},

{17/448, 265/448, 2145/448, 252, 23460/7, 2352/7921}.
In the present paper, we will describe some connections of Diophantine

m-tuples and Fibonacci numbers. There are several reasons why Fibonacci
numbers play an important role in this area. The starting point in the
construction of larger set with the property of Diophantus is usually some
identity of the form ab + 1 = r2. The obvious one

(k − 1)(k + 1) + 1 = k2,

leads to an infinite family of Diophantine quadruples

{k − 1, k + 1, 4k, 16k3 − 4k}. (1)

Concerning this family, we proved in [15] that if k ≥ 2 is an integer and if
{k− 1, k + 1, 4k, d} is a Diophantine quadruple, then d has to be 16k3− 4k.
Another popular starting identity is well-known Cassini’s identity. One of
its equivalent formulations is

Fk · Fk+2 + (−1)k = F 2
k+1,

and this is the basis for the construction of so called Hoggatt-Bergum’s
quadruple, which will be discussed in Section 2.

In Section 4, we will see that Fibonacci numbers satisfy some, more
involved, pairs of identities which fit very nice in the general theory of Dio-
phantine quadruples.

There is a very simple way how one can extend given Diophantine pair
{a, b} to a Diophantine triple. Namely, if ab + 1 = r2, then {a, b, a + b + 2r}
is the Diophantine triple. If we iterate this construction, we obtain the
sequence with the property that its every three successive elements form a
Diophantine triple. The k-th element of this sequence is

F 2
k−2a + F 2

k−1b + 2Fk−2Fk−1r

(see [25]).
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2 Hoggatt-Bergum’s quadruple

In 1977, Hoggatt and Bergum [27] proved that for any positive integer k,
the set

{F2k, F2k+2, F2k+4, 4F2k+1F2k+2F2k+3} (2)

is a Diophantine quadruple. Indeed,

F2k · F2k+2 + 1 = F 2
2k+1,

F2k · F2k+4 + 1 = F 2
2k+2,

F2k · 4F2k+1F2k+2F2k+3 + 1 = (2F2k+1F2k+2 − 1)2,
F2k+2 · F2k+4 + 1 = F 2

2k+3,

F2k+2 · 4F2k+1F2k+2F2k+3 + 1 = (2F 2
2k+2 + 1)2,

F2k+4 · 4F2k+1F2k+2F2k+3 + 1 = (2F2k+2F2k+3 + 1)2.

They also conjectured that the fourth element of the set (2) is unique. In
1999, we were able to prove this conjecture ([17]).

Theorem 1 Let k be a positive integer. If the set {F2k, F2k+2, F2k+4, d} is
a Diophantine quadruple, then d = 4F2k+1F2k+2F2k+3.

We outline the proof of Theorem 1. The proof of the result, mentioned
in Introduction, that there exist only finitely many Diophantine quintuples,
although much more involved, uses the similar ideas.

Assume that {a, b, c} is a Diophantine triple, and we want to find all
extensions of this triple to a Diophantine quadruple {a, b, c, d}. Eliminating
d from

ad + 1 = x2, bd + 1 = y2, cd + 1 = z2,

we obtain the following system of Pellian equations

ay2 − bx2 = a− b,

az2 − cx2 = a− c.

All solutions of a single Pellian equation are contained in the union of finitely
many binary recursive sequences. Therefore, our problem reduces to finitely
many equations of the form vm = wn, where {vm} and {wn} are binary
recursive sequences.

In the case {a, b, c} = {F2k, F2k+2, F2k+4}, it can be shown that we have,
essentially, only one such equation. Namely, in this case, we have to find an
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intersection of two two-sided sequences, defined by

v0 = 1, v1 = F2k+2, vm+2 = 2F2k+1vm+1 − vm, m ∈ Z,

w0 = 1, w1 = F2k + F2k+2, wn+2 = 2F2k+2wn+1 − wn, n ∈ Z.

We claim that the only solutions of the equation vm = wn, m,m ∈ Z are
v0 = w0 = 1 and v2 = w−2 = 2F2k+1F2k+2 − 1. These solutions correspond
to d = 0 and d = 4F2k+1F2k+2F2k+3.

In the proof of this statement we derive a lower bound and an upper
bound for solutions. These bounds have the property that the lower bound
is greater that the upper bound for sufficiently large k. These bounds are ob-
tained by two different transformations of the original exponential equation
vm = wn.

We start with trivial observation that the equality vm = wn implies the
congruence vm ≡ wn (mod N) for all positive integers N . We would like to
choose the modulus N in such way that: 1) {vm mod N} is a polynomial
(not exponential) sequence in m; 2) {wn mod N} has small period. The
both conditions are satisfied by N = 2F2kF2k+2. Namely, we have

v2m ≡ 2mF 2
2k+2 − (2m− 1) (mod 2F2kF2k+2),

v2m+1 ≡ F2k+2 + 2(m− 1)F2k (mod 2F2kF2k+2),

w4n ≡ 1 (mod 2F2kF2k+2), w4n+1 ≡ F2k + F2k+2 (mod 2F2kF2k+2),

w4k+2 ≡ 2F 2
2k+2−1 (mod 2F2kF2k+2), w4k+3 ≡ F2k+1 (mod 2F2kF2k+2).

It is easy to see that these congruences imply that from vm = wn it follows
m ≡ 0 or 2 (mod 2F2k+2). This gives very good lower bound for solutions.
Indeed, if d 6= 4F2k+1F2k+2F2k+3, then m 6= 2, and therefore

m ≥ 2F2k+2. (3)

An upper bound can be obtained using Baker’s theory. Namely, we can
transform our exponential equation vm = wn into a logarithmic inequality,
and then we may apply results on linear forms in logarithms of algebraic
numbers. In [17], we used a theorem of Baker and Wüstholz [2]. We obtained
the following upper bound

m

log m
< 6.423 · 1015 log2 F2k,

which clearly contradicts (3) for large k. Indeed, this finishes the proof
for k ≥ 49. In remaining 48 cases we solved the corresponding systems
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of Pellian equations by a version of Baker-Davenport reduction procedure
([1, 22]). Note that the case k = 1 is exactly the original result of Baker and
Davenport.

As a simple consequence of Theorem 1 we obtain the result that if
{F2k, F2k+2, F2k+4, d} is a Diophantine quadruple, then d cannot be a Fi-
bonacci number. This answers the question posed by Jones [30]. The state-
ment follows directly from Theorem 1 and the relation

F6k+5 < 4F2k+1F2k+2F2k+3 < F6k+6,

proved by Jones.

There are many papers devoted to various generalizations of Hoggatt-
Bergum’s quadruple. Let us briefly mention some of them.

In [33], Morgado showed that the product of any two distinct elements
of the set

{Fk, Fk+2r, Fk+4r, 4Fk+rFk+2rFk+3r}

increased by F 2
a F 2

b or −F 2
a F 2

b , for suitable positive integers a and b, is a
perfect square. The similar results are valid for more general binary recursive
sequences (see [28, 35, 36, 38, 39, 40]).

In [14], the following direct generalization of the Hoggatt-Bergum’s result
was obtained. Let the sequences uk = uk(p) and gk = gk(p) be defined by

u0 = 0, u1 = 1, uk = puk−1 + uk−2, k ≥ 2;

g0 = 0, g1 = 1, gk = pgk−1 − gk−2, k ≥ 2,

where p is an integer. Then

{u2k, u2k+2, 2u2k +(p+2)u2k+1, 4u2k+1((p+2)u2
2k+1 +2u2ku2k+1 +1)} (4)

and
{gk, gk+2, (p− 2)gk+1, 4gk+1((p− 2)g2

k+1 − 1)} (5)

are D(1)-quadruples. Since uk(1) = Fk and gk(3) = F2k, these quadruples
are generalizations of Hoggatt-Bergum’s quadruple. Moreover, since gk(2) =
k, we may consider (5) as a common generalization of Hoggatt-Bergum’s
quadruple (2) and the polynomial quadruple (1).

If we concentrate our attention to the first three elements of Hoggatt-
Bergum’s quadruple, we see that the sequence of Fibonacci numbers with
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even subscripts {F2k} has one remarkable property. If we choose three suc-
cessive elements of this sequence, then the product of any two of them
increased by 1 is a perfect square. In [8], Deshpande and Dujella char-
acterized all nondegenerate binary recursive sequences {Gk} of the form
Gk = AGk−1−Gk−2, which possess the property that there exist an integer
n such that GkGk+1 + n and GkGk+2 + n are perfect squares for all k ≥ 0.
The result is that this assumption implies A = 3 and n = G2

0−3G0G1 +G2
1.

In the other words, Gk = G1F2k − G0F2k−2. Therefore, we see that this
property is very closely related with Fibonacci numbers of even subscripts.

Three successive elements of some other binary recursive sequences also
posses some interesting properties related with the property of Diophantus
(see [3, 6, 7, 31, 37]).

3 A family of elliptic curves

In the previous section, we have shown that all integer solutions of the
system

F2kd + 1 = �, F2k+2d + 1 = �, F2k+4d + 1 = �, (6)

are given by d = 0 and d = 4F2k+1F2k+2F2k+3. Multiplying three conditions
from (6), we obtain the elliptic curve

Ek : y2 = (F2kx + 1)(F2k+2x + 1)(F2k+4x + 1). (7)

Since we can solve the system (6) completely, we may try to find all integer
points on the elliptic curve (7). In [19], we were able to do this, under
assumption that the rank is ”smallest possible”.

Theorem 2 Let k ≥ 2 be an integer. If rank Ek(Q) = 1, then all integer
points on Ek are given by

(x, y) ∈ {(0,±1), (4F2k+1F2k+2F2k+3,±(2F2k+1F2k+2 − 1)

× (2F 2
2k+2 + 1)(2F2k+2F2k+3 + 1)}.

(8)

In the following table we list the values of rk = rank (Ek(Q)) which we
were able to compute (unconditionally) using Cremona’s program mwrank
[5]:

k 1 2 3 4 5 6 7 8 9 12 13 14 16 17 20 23 25 29 31
rk 1 1 2 2 3 1 3 2 3 1 3 2 1 2 1 2 2 2 2
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We also proved that for 2 ≤ k ≤ 50, all integer points on Ek are given
by (8). For k = 1 there is one additional integer point, (−1, 0).

Results analogous to Theorem 7 for the families of elliptic curves cor-
responding to the Diophantine triples of the form {k − 1, k + 1, 4k} and
{1, 3, c}, were proved in [18] and [23] (see also [29]).

4 Diophantine quadruples for squares of Fibonacci
numbers

Definition 2 Let n be an integer. A set of positive integers {a1, a2, . . . , am}
is called a D(n)-m-tuple (or a Diophantine m-tuple with the property D(n),
or a Pn-set of size m) if aiaj + n is a perfect square for all 1 ≤ i < j ≤ m.

Several authors considered the problem for which integers n there exists
a D(n)-quadruple. The first part of the answer was given in 1985 by Brown
[4], Gupta & Singh [25] and Mohanty & Ramasamy [32]. They proved,
independently, that if n ≡ 2 (mod 4), then there does not exist a D(n)-
quadruple. In 1993, we gave the second part of the answer by proving that
if n 6≡ 2 (mod 4) and n 6∈ {−4,−3,−1, 3, 5, 8, 12, 20}, then there exist at
least one D(n)-quadruple.

Questions of different types appear when n is a perfect square. The sets
with the property D(l2), where l is a positive integer, were systematically
studied in [12]. It was proved that for any D(l2)-pair {a, b}, such that ab
is not a perfect square, there exist infinitely D(l2)-quadruples of the form
{a, b, c, d}. This is the generalization of well known fact for l = 1 (see
[26]). The proof of this result is based on the construction of three double
sequences xn,m, yn,m and zn,m which are defined as follows. Let ab+ l2 = r2

and let s and t be the minimal solutions the Pell equation S2 − abT 2 = 1.
Define

y0,0 = l, z0,0 = l, y1,0 = r + a, z1,0 = r + b,

yn+1,0 = 2r
l yn,0 − yn−1,0, zn+1,0 = 2r

l zn,0 − zn−1,0, n ∈ Z,

yn,1 = syn,0 + atzn,0, zn,1 = btyn,0 + szn,0, n ∈ Z,

yn,m+1 = 2syn,m − yn,m−1, zn,m+1 = 2szn,m − zn,m−1, n, m ∈ Z.

The desired quadruples have the form {a, b, xn,m, xn+1,m}, where

xn,m = (y2
n,m − l2)/a = (z2

n,m − l2)/b .

In [12] and [16], the following result was proved.
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Theorem 3 The sets {a, b, x0,m, x−1,m}, m 6∈ {−1, 0, 1}, and {a, b, x0,m,
x1,m}, m 6∈ {−2,−1, 0}, are Diophantine quadruples with the property D(l2).

If we have a pair of identities of the form

ab + l2 = r2 and s2 − abt2 = 1,

then we can construct the sequence xm,n and, by Theorem 3, obtain infinitely
many Diophantine quadruples with the property D(l2). There are several
pairs of identities for Fibonacci and Lucas numbers, which have the above
form. For example, starting with the identities

4Fk−1Fk+1 + F 2
k = L2

k,

4Fk−1F
2
k Fk+1 + 1 = (F 2

k + Fk−1Fk+1)2,

we obtain, e.g. the D(F 2
k )-quadruples

{2Fk−1, 2Fk+1, 2F 3
k Fk+1Fk+2, 2Fk+1Fk+2Fk+3(2F 2

k+1 − F 2
k )},

{Fk−1, 4Fk+1, Fk−2Fk−1Fk+1(2F 2
k − F 2

k−1), F 3
k Fk+2Fk+3},

{4Fk−1, Fk+1, Fk−2F2k−2F2k−1, F 3
k LkLk+1}

(see [13]).

In general, x2,0 need not to be an integer. Indeed, x2,0 = 4r(r+a)(r+b)
l2

.
But if x2,0 is a positive integer, then {a, b, x1,0, x2,0} is a D(l2)-quadruple.
With this method, some formulas for quadruples with the properties D(1),
D(4), D(9) and D(64), in terms of Fibonacci and Lucas numbers, were
obtained in [11, 12]. This idea was also applied in [13] to the Morgado
identity [34]:

Fk−3Fk−2Fk−1Fk+1Fk+2Fk+3 + L2
k =

(
Fk(2Fk−1Fk+1 − F 2

k )
)2

.

Among the others, the following D(L2
k)-quadruple was obtained:

{Fk−3Fk−2Fk+1, Fk−1Fk+2Fk+3, FkL
2
k, 4F 2

k−1FkF
2
k+1(2Fk−1Fk+1 − F 2

k )}.

In [14], all results from this section were generalized to the sequences
{uk} and {gk}, defined in Section 2.
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