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Abstract. In this paper we describe the author’s results concerning the
problem of the existence of a set of four or five positive integers with the
property that the product of its any two distinct elements increased by a
fixed integer n is a perfect square.
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Sažetak. Diofant - Davenportov problem. U članku su opisani au-
torovi rezultati vezani uz problem postojanja skupa od četiri ili pet prirodnih
brojeva sa svojstvom da je produkt svaka dva različita elementa tog skupa
uvećan za fiksan cijeli broj n jednak kvadratu nekog cijelog broja.

Ključne riječi: Diofantovo svojstvo, Diofantova četvorka, Pellova jed-
nadžba, Fibonaccijevi brojevi

1 Introduction

The Greek mathematician Diophantus of Alexandria studied the following
problem: Find four (positive rational) numbers such that the product of any
two of them increased by 1 is a perfect square. He obtained the following
solution: 1

16 , 33
16 , 17

4 , 105
16 (see [6]). The first set of four positive integers with

the above property was found by Fermat, and it was {1, 3, 8, 120}. Euler
gave the solution {a, b, a + b + 2r, 4r(r + a)(r + b)}, where ab + 1 = r2 (see
[5]).
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Definition 1. A set of positive integers {a1, a2, . . . , am} is said to have
the property of Diophantus if aiaj+1 is a perfect square for all 1 ≤ i < j ≤ m.
Such a set is called a Diophantine m-tuple.

Therefore, the Fermat’s set is an example of a Diophantine quadruple,
and the famous open question is whether there exists a Diophantine quin-
tuple (quintuple = 5-tuple). The first result in that direction was proved in
1969 by Baker and Davenport [2]. They proved that if d is a positive inte-
ger such that {1, 3, 8, d} is a Diophantine quadruple, then d has to be 120.
The same result was proved later by Kanagasabapathy and Ponnudurai [24],
Sansone [33] and Grinstead [19]. This result implies that the Diophantine
triple {1, 3, 8} cannot be extended to a Diophantine quintuple.

2 The problem of the extension of Diophantine
triples

In 1979, Arkin, Hoggatt and Strauss [1] proved that every Diophantine triple
{a, b, c} can be extended to the Diophantine quadruple {a, b, c, d}. More
precisely, if

ab + 1 = r2, ac + 1 = s2, bc + 1 = t2,

then we can take
d = a + b + c + 2abc± 2rst.

Conjecture A. In the above notation, d has to be a+b+c+2abc±2rst.

It is easy to see that the validity of Conjecture A would imply that there
does not exist a Diophantine quintuple. Conjecture A can be rephrased in
the terms of Pellian equations.

Conjecture B. If a, b, c, r, s, t are positive integers satisfying ab+1 = r2,
ac+1 = s2, bc+1 = t2, then all solutions of the system of Pellian equations

ay2 − bx2 = a− b, az2 − cx2 = a− c

are given by |x| ∈ {1, rs− at, rs + at}.

As it was mentioned before, Baker and Davenport verified the above
conjectures for the triple {1, 3, 8}. Furthermore, Veluppillai [36] verified the
conjectures for the triple {2, 4, 12} and Kedlaya [25] for the triples {1, 3, 120},
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{1, 8, 120}, {1, 8, 15}, {1, 15, 35}, {1, 24, 35}, and {2, 12, 24}. Recently, I ver-
ified the conjectures for two infinite families of Diophantine triples, namely,
for all triples of the form {k, k+2, 4k+4} (see [17]) and {F2k, F2k+2, F2k+4},
k ∈ N (Fk denotes kth Fibonacci number). Also, in the joint paper with
A. Pethő [18], we verified the conjectures for all Diophantine triples of the
form {1, 3, c}. Our result implies that the Diophantine pair {1, 3} cannot be
extended to a Diophantine quintuple.

I will outline the proof of our result. First of all, observe that the con-
dition that {1, 3, c} is a Diophantine triple implies that c = ck, where recur-
rence sequence (ck) is defined by

c1 = 8, c2 = 120, ck+2 = 14ck+1 − ck + 8.

Let k be the minimal positive integer, if such exists, for which the state-
ment is not valid. Then k ≥ 3 and our proof begins by proving that k ≤ 75.
We have to solve the following system of Pellian equations:

z2 − ckx
2 = 1− ck, 3z2 − cky

2 = 3− ck.

For any fixed k the solutions of each of these equations belong to the union
of the sets of members of finitely many linear recurrence sequences. We
first localize the initial terms of the recurrence sequences provided that the
above system is soluble. Here we use congruence condition modulo ck. In
the second step we consider the remaining sequences modulo c2

k and rule
out all but two equations in terms of linear recurrence sequences. Then
we transform the exponential equations into inequalities for linear forms in
three logarithms of algebraic numbers, which depend on the parameter k. A
comparison of the theorem of Baker and Wüstholz [3] with the lower bounds
for the solutions obtained from the congruence condition modulo c2

k finishes
the proof that k ≤ 75. Finally, we prove the statement for 3 ≤ k ≤ 75 by
using a version of the reduction procedure due to Baker and Davenport [2].

3 Generalization of the problem of Diophantus and
Davenport

Definition 2. Let n be an integer. A set of positive integers {a1, a2, . . .,
am} is said to have the property D(n) if aiaj + n is a perfect square for all
1 ≤ i < j ≤ m. Such a set is called a Diophantine m-tuple (with the property
D(n)), or Pn-set of size m.
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Several authors considered the problem of the existence of Diophantine
quadruples with the property D(n) for an arbitrary integer n. In 1985,
Brown [4], Gupta and Singh [20] and Mohanty and Ramasamy [28] proved
independently that if n ≡ 2 (mod 4), then there does not exist a Diophan-
tine quadruple with the property D(n).

In 1993, I proved that if n 6≡ 2 (mod 4) and n 6∈ S = {−4,−3,−1, 3, 5,
8, 12, 20}, then there exists at least one Diophantine quadruple with the
property D(n), and if n 6∈ S ∪ T , where T = {−15,−12,−7, 7, 13, 15, 21,
24, 28, 32, 48, 60, 84}, then there exist at least two different Diophantine
quadruples with the property D(n) (see [7, Theorems 5 and 6] and [8,
p. 315]).

For n ∈ S the question of the existence of Diophantine quadruples with
the property D(n) is still unanswered. Let us mention that in [4, 25, 27],
it was proved that some particular Diophantine triples with the property
D(−1) cannot be extended to Diophantine quadruples with the same prop-
erty. The conjecture is that for n ∈ S there does not exist a Diophantine
quadruple with the property D(n). In [13], some consequences of this con-
jecture were considered.

The above mentioned results from [7] were proved by considering the
following cases:

n = 4k + 3, n = 8k + 1, n = 8k + 5, n = 8k, n = 16k + 4, n = 16k + 12.

In any of these cases, we can find two sets with the property D(n) consisted
of the four polynomials in k with integral coefficients. For example, the sets

{1, k2 − 2k + 2, k2 + 1, 4k2 − 4k − 3},

{1, 9k2 + 8k + 1, 9k2 + 14k + 6, 36k2 + 44k + 13}

have the property D(4k + 3). The elements from the sets S and T are
exceptions because we can get the sets with nonpositive or equal elements
for some values of k.

The formulas of the similar type were systematically derived in [10].
These formulas were used in [12] and the above results are generalized to the
set of Gaussian integers. Using the two-parametric formulas for Diophantine
quadruples from [10], in [16], some improvements of the results of [7] were
obtained. It was proved that if |n| is sufficiently large and n ≡ 1 (mod 8),
or n ≡ 4 (mod 32), or n ≡ 0 (mod 16), then there exist at least six, and
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if n ≡ 8 (mod 16), or n ≡ 13, 21 (mod 24), or n ≡ 3, 7 (mod 12), then
there exist at least four distinct Diophantine quadruples with the property
D(n).

Let U denote the set of all integers n, not of the form 4k + 2, such that
there exist at most two distinct Diophantine quadruples with the property
D(n). One open question is whether the set U is finite or not. From the
results from [16] it follows that if n ∈ U and |n| > 48, then n ≡ 3 (mod 4),
or n ≡ 12 (mod 16), or n ≡ 5 (mod 8), or n ≡ 20 (mod 32). In [15], it
was proved that if n ∈ U \ {−9,−1, 3, 7, 11} and n ≡ 3 (mod 4), then the
integers |n−1|/2, |n−9|/2 and |9n−1|/2 are primes, and either |n| is prime
or n is the product of twin primes. Also, if n ∈ U \ {−27,−3, 5, 13, 21, 45}
and n ≡ 5 (mod 8), then the integers |n|, |n− 1|/4, |n− 9|/4 and |9n− 1|/4
are primes.
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4 Diophantine quadruples with the property D(l2)

From Euler’s result mentioned in the introduction it follows that there exists
an infinite number of Diophantine quadruples with the property D(1). Let
l be an integer. Multiplying all elements of a set with the property D(1)
by l we obtain a set with the property D(l2). Accordingly, there exists an
infinite number of Diophantine quadruples with the property D(l2).

In [7], I proved the stronger result. Namely, for any set {a, b} with the
property D(l2), where ab is not a perfect square, there exists an infinite
number of Diophantine quadruples of the form {a, b, c, d} with the property
D(l2). The proof of this result is based on the construction of the double
sequences yn,m and zn,m which are defined in [7] by second order recurrences
in each index. Solving these recurrences we obtain

yn,m =
l

2
√

b
{(
√

a +
√

b)[
1
l
(k +

√
ab)]n(s + t

√
ab)m

+ (
√

b−
√

a)[
1
l
(k −

√
ab)]n(s− t

√
ab)m},

zn,m =
l

2
√

a
{(
√

a +
√

b)[
1
l
(k +

√
ab)]n(s + t

√
ab)m

+ (
√

a−
√

b)[
1
l
(k −

√
ab)]n(s− t

√
ab)m} ,

where s and t are positive integers satisfying the Pell equation s2−abt2 = 1.
The desired quadruples have the form {a, b, xn,m, xn+1,m}, where

xn,m = (y2
n,m − l2)/a = (z2

n,m − l2)/b .

In general, xn,m is a rational number, but in [14], it was proved that if
n∈{−1, 0, 1} and (n, m) 6∈ {(−1, 0), (−1, 1), (0,−1), (0, 0), (1,−2), (1,−1)},
then xn,m is a positive integer.

Example 1.
1 · 7 + 32 = 42

In this case, x−2,m, x−1,m, x0,m, x1,m ∈ Z and the following sets have the
property D(9):

{1, 7, 40, 216}, {1, 7, 216, 1080}, {1, 7, 1080, 5320}, {1, 7, 11440, 56160}, . . .

If we have the pair of identities of the form: ab+l2 = k2 and s2−abt2 = 1,
then we can construct the sequence xn,m and obtain an infinite number of
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Diophantine quadruples with the property D(l2). There are several pairs of
identities for Fibonacci and Lucas numbers which have the above form. For
example,

4Fn−1Fn+1 + F 2
n = L2

n,

(F 2
n + Fn−1Fn+1)2 − 4Fn−1Fn+1 · F 2

n = 1

and

4Fn−2Fn+2 + L2
n = 9F 2

n ,

(F 2
n + Fn−2Fn+2)2 − 4Fn−2Fn+2 · F 2

n = 1.

Applying our construction to these pairs of identities we get e. g. the set

{2Fn−1, 2Fn+1, 2Fn−2Fn−1F
3
n , 2F 3

nFn+1Fn+2}

with the property D(F 2
n) and the set

{2Fn−2, 2Fn+2, 2Fn−1FnL2
nLn+1, 2Ln−1FnL2

nLn+1}

with the property D(L2
n) (see [8]).

Several authors considered the connections of the problem of Diophantus
and Davenport and (generalized) Fibonacci numbers (see [9, 21, 22, 23, 26,
30, 31, 32, 34, 35]). These papers are mainly devoted to various generaliza-
tions of the result of Hoggatt and Bergum [21] that the set

{F2k, F2k+2, F2k+4, 4F2k+1F2k+2F2k+3}

has the property D(1).

5 Rational Diophantine quintuples

In [11], generalizing the result of Arkin, Hoggatt and Strauss [1], I proved
the following theorem.

Theorem 1. Let q, a1, a2, a3, a4 be rational numbers such that aiaj +
q2 = b2

ij , bij ∈ Q, for all 1 ≤ i < j ≤ 4. Assume that a1a2a3a4 6= q4. Then
the rational number a5 = A/B, where

A = q3[2b12b13b14b23b24b34 + qa1a2a3a4(a1 + a2 + a3 + a4)
+ 2q3(a1a2a3 + a1a2a4 + a1a3a4 + a2a3a4) + q5(a1 + a2 + a3 + a4)] ,
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B = (a1a2a3a4 − q4)2 ,

has the property that aia5 + q2 is a square of a rational number for i =
1, 2, 3, 4. To be more precise, for i ∈ {1, 2, 3, 4} it holds:

aia5 + q2 = (q
aibjkbjlbkl + qbijbikbil

a1a2a3a4 − q4
)2 ,

where {i, j, k, l} = {1, 2, 3, 4}.

As a corollary we get the result that for all Diophantine quadruples
{a1, a2, a3, a4} with the property D(1) there exists a positive rational number
a5 such that aia5 + 1 is a square of a rational number for i = 1, 2, 3, 4.

Since the signs of bij are arbitrary, we have two choices for a5. Let a+
5 and

a−5 denote these two numbers, and let a+
5 be the number which corresponds

to the case where all bij are nonnegative.

Example 2. If we apply the construction from Theorem 1 to Fermat’s
set {1, 3, 8, 120}, we obtain a+

5 = 777480
28792 , a−5 = 0. For Diophantus’ original

set { 1
16 , 33

16 , 17
4 , 105

16 } we obtain a+
5 = 1557225246720

425212 and a−5 = −4387246080
425212 , and

for the set {4, 21, 69, 125} with the property D(400) we obtain a+
5 = 384,

a−5 = −4032000
11292 .

The construction from Theorem 1 can be interpreted using the group
low on elliptic curves. Namely, consider the elliptic curve

y2 = (a1x + q2)(a2x + q2)(a3x + q2). (1)

The points P = (a4, b14b24b34) and Q = ( q4

a1a2a3
, q3b12b13b23

a1a2a3
) are rational

points on the curve (1). Now, the numbers a+
5 and a−5 are just the first

coordinates of the points P ±Q on (1). See [37] for more details about the
connection of the problem of Diophantus and Davenport and the theory of
elliptic curves.

Let us finish the paper with some open questions.
Since it is not known whether there exists a Diophantine quintuple with

the property D(1), one may ask what is the least positive integer n1, and
what is the greatest negative integer n2, for which there exists a Diophan-
tine quintuple with the property D(ni), i = 1, 2. Certainly n1 ≤ 256 and
n2 ≥ −255, since the sets {1, 33, 105, 320, 18240} and {5, 21, 64, 285, 6720}
have the property D(256), and the set {8, 32, 77, 203, 528} has the property
D(−255) (see also [29]).
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The definition of a Diophantine m-tuple can be extended to the subsets of
Q. Let q be a rational number. We call a set M = {a1, a2, . . . , am} ⊂ Q\{0}
a rational Diophantine m-tuple with the property D(q) if the product of any
two distinct elements of M increased by q is equal to the square of a rational
number. It follows easily from [7, Theorem 5] that for every rational number
q there exists a rational Diophantine quadruple with the property D(q).
Thus we came to the following open question: For which rational numbers
q there exists a rational Diophantine quintuple with the property D(q)?

And finally, an open question is whether there exists a rational num-
ber q 6= 0 such that there exists a rational Diophantine sextuple with the
property D(q).
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